LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ chpgv()

subroutine chpgv ( integer itype,
character jobz,
character uplo,
integer n,
complex, dimension( * ) ap,
complex, dimension( * ) bp,
real, dimension( * ) w,
complex, dimension( ldz, * ) z,
integer ldz,
complex, dimension( * ) work,
real, dimension( * ) rwork,
integer info )

CHPGV

Download CHPGV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CHPGV computes all the eigenvalues and, optionally, the eigenvectors
!> of a complex generalized Hermitian-definite eigenproblem, of the form
!> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
!> Here A and B are assumed to be Hermitian, stored in packed format,
!> and B is also positive definite.
!> 
Parameters
[in]ITYPE
!>          ITYPE is INTEGER
!>          Specifies the problem type to be solved:
!>          = 1:  A*x = (lambda)*B*x
!>          = 2:  A*B*x = (lambda)*x
!>          = 3:  B*A*x = (lambda)*x
!> 
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangles of A and B are stored;
!>          = 'L':  Lower triangles of A and B are stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 
[in,out]AP
!>          AP is COMPLEX array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the Hermitian matrix
!>          A, packed columnwise in a linear array.  The j-th column of A
!>          is stored in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
!>
!>          On exit, the contents of AP are destroyed.
!> 
[in,out]BP
!>          BP is COMPLEX array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the Hermitian matrix
!>          B, packed columnwise in a linear array.  The j-th column of B
!>          is stored in the array BP as follows:
!>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
!>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
!>
!>          On exit, the triangular factor U or L from the Cholesky
!>          factorization B = U**H*U or B = L*L**H, in the same storage
!>          format as B.
!> 
[out]W
!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 
[out]Z
!>          Z is COMPLEX array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
!>          eigenvectors.  The eigenvectors are normalized as follows:
!>          if ITYPE = 1 or 2, Z**H*B*Z = I;
!>          if ITYPE = 3, Z**H*inv(B)*Z = I.
!>          If JOBZ = 'N', then Z is not referenced.
!> 
[in]LDZ
!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (max(1, 2*N-1))
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (max(1, 3*N-2))
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  CPPTRF or CHPEV returned an error code:
!>             <= N:  if INFO = i, CHPEV failed to converge;
!>                    i off-diagonal elements of an intermediate
!>                    tridiagonal form did not convergeto zero;
!>             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
!>                    principal minor of order i of B is not positive.
!>                    The factorization of B could not be completed and
!>                    no eigenvalues or eigenvectors were computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 161 of file chpgv.f.

164*
165* -- LAPACK driver routine --
166* -- LAPACK is a software package provided by Univ. of Tennessee, --
167* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
168*
169* .. Scalar Arguments ..
170 CHARACTER JOBZ, UPLO
171 INTEGER INFO, ITYPE, LDZ, N
172* ..
173* .. Array Arguments ..
174 REAL RWORK( * ), W( * )
175 COMPLEX AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
176* ..
177*
178* =====================================================================
179*
180* .. Local Scalars ..
181 LOGICAL UPPER, WANTZ
182 CHARACTER TRANS
183 INTEGER J, NEIG
184* ..
185* .. External Functions ..
186 LOGICAL LSAME
187 EXTERNAL lsame
188* ..
189* .. External Subroutines ..
190 EXTERNAL chpev, chpgst, cpptrf, ctpmv, ctpsv,
191 $ xerbla
192* ..
193* .. Executable Statements ..
194*
195* Test the input parameters.
196*
197 wantz = lsame( jobz, 'V' )
198 upper = lsame( uplo, 'U' )
199*
200 info = 0
201 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
202 info = -1
203 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
204 info = -2
205 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
206 info = -3
207 ELSE IF( n.LT.0 ) THEN
208 info = -4
209 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
210 info = -9
211 END IF
212 IF( info.NE.0 ) THEN
213 CALL xerbla( 'CHPGV ', -info )
214 RETURN
215 END IF
216*
217* Quick return if possible
218*
219 IF( n.EQ.0 )
220 $ RETURN
221*
222* Form a Cholesky factorization of B.
223*
224 CALL cpptrf( uplo, n, bp, info )
225 IF( info.NE.0 ) THEN
226 info = n + info
227 RETURN
228 END IF
229*
230* Transform problem to standard eigenvalue problem and solve.
231*
232 CALL chpgst( itype, uplo, n, ap, bp, info )
233 CALL chpev( jobz, uplo, n, ap, w, z, ldz, work, rwork, info )
234*
235 IF( wantz ) THEN
236*
237* Backtransform eigenvectors to the original problem.
238*
239 neig = n
240 IF( info.GT.0 )
241 $ neig = info - 1
242 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
243*
244* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
245* backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y
246*
247 IF( upper ) THEN
248 trans = 'N'
249 ELSE
250 trans = 'C'
251 END IF
252*
253 DO 10 j = 1, neig
254 CALL ctpsv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
255 $ 1 )
256 10 CONTINUE
257*
258 ELSE IF( itype.EQ.3 ) THEN
259*
260* For B*A*x=(lambda)*x;
261* backtransform eigenvectors: x = L*y or U**H*y
262*
263 IF( upper ) THEN
264 trans = 'C'
265 ELSE
266 trans = 'N'
267 END IF
268*
269 DO 20 j = 1, neig
270 CALL ctpmv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
271 $ 1 )
272 20 CONTINUE
273 END IF
274 END IF
275 RETURN
276*
277* End of CHPGV
278*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine chpev(jobz, uplo, n, ap, w, z, ldz, work, rwork, info)
CHPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Definition chpev.f:136
subroutine chpgst(itype, uplo, n, ap, bp, info)
CHPGST
Definition chpgst.f:111
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine cpptrf(uplo, n, ap, info)
CPPTRF
Definition cpptrf.f:117
subroutine ctpmv(uplo, trans, diag, n, ap, x, incx)
CTPMV
Definition ctpmv.f:142
subroutine ctpsv(uplo, trans, diag, n, ap, x, incx)
CTPSV
Definition ctpsv.f:144
Here is the call graph for this function:
Here is the caller graph for this function: