LAPACK 3.12.0
LAPACK: Linear Algebra PACKage

subroutine dppsv  (  character  uplo, 
integer  n,  
integer  nrhs,  
double precision, dimension( * )  ap,  
double precision, dimension( ldb, * )  b,  
integer  ldb,  
integer  info  
) 
DPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Download DPPSV + dependencies [TGZ] [ZIP] [TXT]
DPPSV computes the solution to a real system of linear equations A * X = B, where A is an NbyN symmetric positive definite matrix stored in packed format and X and B are NbyNRHS matrices. The Cholesky decomposition is used to factor A as A = U**T* U, if UPLO = 'U', or A = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations A * X = B.
[in]  UPLO  UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. 
[in]  N  N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. 
[in]  NRHS  NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. 
[in,out]  AP  AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The jth column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j1)*(2nj)/2) = A(i,j) for j<=i<=n. See below for further details. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, in the same storage format as A. 
[in,out]  B  B is DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the NbyNRHS right hand side matrix B. On exit, if INFO = 0, the NbyNRHS solution matrix X. 
[in]  LDB  LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). 
[out]  INFO  INFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value > 0: if INFO = i, the leading principal minor of order i of A is not positive, so the factorization could not be completed, and the solution has not been computed. 
The packed storage scheme is illustrated by the following example when N = 4, UPLO = 'U': Twodimensional storage of the symmetric matrix A: a11 a12 a13 a14 a22 a23 a24 a33 a34 (aij = conjg(aji)) a44 Packed storage of the upper triangle of A: AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
Definition at line 143 of file dppsv.f.