LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
dchksy_rook.f
Go to the documentation of this file.
1 *> \brief \b DCHKSY_ROOK
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE DCHKSY_ROOK( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
12 * THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
13 * XACT, WORK, RWORK, IWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NNB, NNS, NOUT
18 * DOUBLE PRECISION THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
23 * DOUBLE PRECISION A( * ), AFAC( * ), AINV( * ), B( * ),
24 * \$ RWORK( * ), WORK( * ), X( * ), XACT( * )
25 * ..
26 *
27 *
28 *> \par Purpose:
29 * =============
30 *>
31 *> \verbatim
32 *>
33 *> DCHKSY_ROOK tests DSYTRF_ROOK, -TRI_ROOK, -TRS_ROOK,
34 *> and -CON_ROOK.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] DOTYPE
41 *> \verbatim
42 *> DOTYPE is LOGICAL array, dimension (NTYPES)
43 *> The matrix types to be used for testing. Matrices of type j
44 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46 *> \endverbatim
47 *>
48 *> \param[in] NN
49 *> \verbatim
50 *> NN is INTEGER
51 *> The number of values of N contained in the vector NVAL.
52 *> \endverbatim
53 *>
54 *> \param[in] NVAL
55 *> \verbatim
56 *> NVAL is INTEGER array, dimension (NN)
57 *> The values of the matrix dimension N.
58 *> \endverbatim
59 *>
60 *> \param[in] NNB
61 *> \verbatim
62 *> NNB is INTEGER
63 *> The number of values of NB contained in the vector NBVAL.
64 *> \endverbatim
65 *>
66 *> \param[in] NBVAL
67 *> \verbatim
68 *> NBVAL is INTEGER array, dimension (NBVAL)
69 *> The values of the blocksize NB.
70 *> \endverbatim
71 *>
72 *> \param[in] NNS
73 *> \verbatim
74 *> NNS is INTEGER
75 *> The number of values of NRHS contained in the vector NSVAL.
76 *> \endverbatim
77 *>
78 *> \param[in] NSVAL
79 *> \verbatim
80 *> NSVAL is INTEGER array, dimension (NNS)
81 *> The values of the number of right hand sides NRHS.
82 *> \endverbatim
83 *>
84 *> \param[in] THRESH
85 *> \verbatim
86 *> THRESH is DOUBLE PRECISION
87 *> The threshold value for the test ratios. A result is
88 *> included in the output file if RESULT >= THRESH. To have
89 *> every test ratio printed, use THRESH = 0.
90 *> \endverbatim
91 *>
92 *> \param[in] TSTERR
93 *> \verbatim
94 *> TSTERR is LOGICAL
95 *> Flag that indicates whether error exits are to be tested.
96 *> \endverbatim
97 *>
98 *> \param[in] NMAX
99 *> \verbatim
100 *> NMAX is INTEGER
101 *> The maximum value permitted for N, used in dimensioning the
102 *> work arrays.
103 *> \endverbatim
104 *>
105 *> \param[out] A
106 *> \verbatim
107 *> A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
108 *> \endverbatim
109 *>
110 *> \param[out] AFAC
111 *> \verbatim
112 *> AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
113 *> \endverbatim
114 *>
115 *> \param[out] AINV
116 *> \verbatim
117 *> AINV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
118 *> \endverbatim
119 *>
120 *> \param[out] B
121 *> \verbatim
122 *> B is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
123 *> where NSMAX is the largest entry in NSVAL.
124 *> \endverbatim
125 *>
126 *> \param[out] X
127 *> \verbatim
128 *> X is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
129 *> \endverbatim
130 *>
131 *> \param[out] XACT
132 *> \verbatim
133 *> XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
134 *> \endverbatim
135 *>
136 *> \param[out] WORK
137 *> \verbatim
138 *> WORK is DOUBLE PRECISION array, dimension (NMAX*max(3,NSMAX))
139 *> \endverbatim
140 *>
141 *> \param[out] RWORK
142 *> \verbatim
143 *> RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX))
144 *> \endverbatim
145 *>
146 *> \param[out] IWORK
147 *> \verbatim
148 *> IWORK is INTEGER array, dimension (2*NMAX)
149 *> \endverbatim
150 *>
151 *> \param[in] NOUT
152 *> \verbatim
153 *> NOUT is INTEGER
154 *> The unit number for output.
155 *> \endverbatim
156 *
157 * Authors:
158 * ========
159 *
160 *> \author Univ. of Tennessee
161 *> \author Univ. of California Berkeley
162 *> \author Univ. of Colorado Denver
163 *> \author NAG Ltd.
164 *
165 *> \date November 2015
166 *
167 *> \ingroup double_lin
168 *
169 * =====================================================================
170  SUBROUTINE dchksy_rook( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
171  \$ thresh, tsterr, nmax, a, afac, ainv, b, x,
172  \$ xact, work, rwork, iwork, nout )
173 *
174 * -- LAPACK test routine (version 3.6.0) --
175 * -- LAPACK is a software package provided by Univ. of Tennessee, --
176 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
177 * November 2015
178 *
179 * .. Scalar Arguments ..
180  LOGICAL TSTERR
181  INTEGER NMAX, NN, NNB, NNS, NOUT
182  DOUBLE PRECISION THRESH
183 * ..
184 * .. Array Arguments ..
185  LOGICAL DOTYPE( * )
186  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
187  DOUBLE PRECISION A( * ), AFAC( * ), AINV( * ), B( * ),
188  \$ rwork( * ), work( * ), x( * ), xact( * )
189 * ..
190 *
191 * =====================================================================
192 *
193 * .. Parameters ..
194  DOUBLE PRECISION ZERO, ONE
195  parameter ( zero = 0.0d+0, one = 1.0d+0 )
196  DOUBLE PRECISION EIGHT, SEVTEN
197  parameter ( eight = 8.0d+0, sevten = 17.0d+0 )
198  INTEGER NTYPES
199  parameter ( ntypes = 10 )
200  INTEGER NTESTS
201  parameter ( ntests = 7 )
202 * ..
203 * .. Local Scalars ..
204  LOGICAL TRFCON, ZEROT
205  CHARACTER DIST, TYPE, UPLO, XTYPE
206  CHARACTER*3 PATH, MATPATH
207  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
208  \$ itemp, iuplo, izero, j, k, kl, ku, lda, lwork,
209  \$ mode, n, nb, nerrs, nfail, nimat, nrhs, nrun,
210  \$ nt
211  DOUBLE PRECISION ALPHA, ANORM, CNDNUM, CONST, DTEMP, SING_MAX,
212  \$ sing_min, rcond, rcondc
213 * ..
214 * .. Local Arrays ..
215  CHARACTER UPLOS( 2 )
216  INTEGER IDUMMY( 1 ), ISEED( 4 ), ISEEDY( 4 )
217  DOUBLE PRECISION BLOCK( 2, 2 ), DDUMMY( 1 ), RESULT( ntests )
218 * ..
219 * .. External Functions ..
220  DOUBLE PRECISION DGET06, DLANGE, DLANSY
221  EXTERNAL dget06, dlange, dlansy
222 * ..
223 * .. External Subroutines ..
224  EXTERNAL alaerh, alahd, alasum, derrsy, dget04, dlacpy,
228 * ..
229 * .. Intrinsic Functions ..
230  INTRINSIC max, min, sqrt
231 * ..
232 * .. Scalars in Common ..
233  LOGICAL LERR, OK
234  CHARACTER*32 SRNAMT
235  INTEGER INFOT, NUNIT
236 * ..
237 * .. Common blocks ..
238  COMMON / infoc / infot, nunit, ok, lerr
239  COMMON / srnamc / srnamt
240 * ..
241 * .. Data statements ..
242  DATA iseedy / 1988, 1989, 1990, 1991 /
243  DATA uplos / 'U', 'L' /
244 * ..
245 * .. Executable Statements ..
246 *
247 * Initialize constants and the random number seed.
248 *
249  alpha = ( one+sqrt( sevten ) ) / eight
250 *
251 * Test path
252 *
253  path( 1: 1 ) = 'Double precision'
254  path( 2: 3 ) = 'SR'
255 *
256 * Path to generate matrices
257 *
258  matpath( 1: 1 ) = 'Double precision'
259  matpath( 2: 3 ) = 'SY'
260 *
261  nrun = 0
262  nfail = 0
263  nerrs = 0
264  DO 10 i = 1, 4
265  iseed( i ) = iseedy( i )
266  10 CONTINUE
267 *
268 * Test the error exits
269 *
270  IF( tsterr )
271  \$ CALL derrsy( path, nout )
272  infot = 0
273 *
274 * Set the minimum block size for which the block routine should
275 * be used, which will be later returned by ILAENV
276 *
277  CALL xlaenv( 2, 2 )
278 *
279 * Do for each value of N in NVAL
280 *
281  DO 270 in = 1, nn
282  n = nval( in )
283  lda = max( n, 1 )
284  xtype = 'N'
285  nimat = ntypes
286  IF( n.LE.0 )
287  \$ nimat = 1
288 *
289  izero = 0
290 *
291 * Do for each value of matrix type IMAT
292 *
293  DO 260 imat = 1, nimat
294 *
295 * Do the tests only if DOTYPE( IMAT ) is true.
296 *
297  IF( .NOT.dotype( imat ) )
298  \$ GO TO 260
299 *
300 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
301 *
302  zerot = imat.GE.3 .AND. imat.LE.6
303  IF( zerot .AND. n.LT.imat-2 )
304  \$ GO TO 260
305 *
306 * Do first for UPLO = 'U', then for UPLO = 'L'
307 *
308  DO 250 iuplo = 1, 2
309  uplo = uplos( iuplo )
310 *
311 * Begin generate the test matrix A.
312 *
313 * Set up parameters with DLATB4 for the matrix generator
314 * based on the type of matrix to be generated.
315 *
316  CALL dlatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
317  \$ mode, cndnum, dist )
318 *
319 * Generate a matrix with DLATMS.
320 *
321  srnamt = 'DLATMS'
322  CALL dlatms( n, n, dist, iseed, TYPE, RWORK, MODE,
323  \$ cndnum, anorm, kl, ku, uplo, a, lda, work,
324  \$ info )
325 *
326 * Check error code from DLATMS and handle error.
327 *
328  IF( info.NE.0 ) THEN
329  CALL alaerh( path, 'DLATMS', info, 0, uplo, n, n, -1,
330  \$ -1, -1, imat, nfail, nerrs, nout )
331 *
332 * Skip all tests for this generated matrix
333 *
334  GO TO 250
335  END IF
336 *
337 * For matrix types 3-6, zero one or more rows and
338 * columns of the matrix to test that INFO is returned
339 * correctly.
340 *
341  IF( zerot ) THEN
342  IF( imat.EQ.3 ) THEN
343  izero = 1
344  ELSE IF( imat.EQ.4 ) THEN
345  izero = n
346  ELSE
347  izero = n / 2 + 1
348  END IF
349 *
350  IF( imat.LT.6 ) THEN
351 *
352 * Set row and column IZERO to zero.
353 *
354  IF( iuplo.EQ.1 ) THEN
355  ioff = ( izero-1 )*lda
356  DO 20 i = 1, izero - 1
357  a( ioff+i ) = zero
358  20 CONTINUE
359  ioff = ioff + izero
360  DO 30 i = izero, n
361  a( ioff ) = zero
362  ioff = ioff + lda
363  30 CONTINUE
364  ELSE
365  ioff = izero
366  DO 40 i = 1, izero - 1
367  a( ioff ) = zero
368  ioff = ioff + lda
369  40 CONTINUE
370  ioff = ioff - izero
371  DO 50 i = izero, n
372  a( ioff+i ) = zero
373  50 CONTINUE
374  END IF
375  ELSE
376  IF( iuplo.EQ.1 ) THEN
377 *
378 * Set the first IZERO rows and columns to zero.
379 *
380  ioff = 0
381  DO 70 j = 1, n
382  i2 = min( j, izero )
383  DO 60 i = 1, i2
384  a( ioff+i ) = zero
385  60 CONTINUE
386  ioff = ioff + lda
387  70 CONTINUE
388  ELSE
389 *
390 * Set the last IZERO rows and columns to zero.
391 *
392  ioff = 0
393  DO 90 j = 1, n
394  i1 = max( j, izero )
395  DO 80 i = i1, n
396  a( ioff+i ) = zero
397  80 CONTINUE
398  ioff = ioff + lda
399  90 CONTINUE
400  END IF
401  END IF
402  ELSE
403  izero = 0
404  END IF
405 *
406 * End generate the test matrix A.
407 *
408 *
409 * Do for each value of NB in NBVAL
410 *
411  DO 240 inb = 1, nnb
412 *
413 * Set the optimal blocksize, which will be later
414 * returned by ILAENV.
415 *
416  nb = nbval( inb )
417  CALL xlaenv( 1, nb )
418 *
419 * Copy the test matrix A into matrix AFAC which
420 * will be factorized in place. This is needed to
421 * preserve the test matrix A for subsequent tests.
422 *
423  CALL dlacpy( uplo, n, n, a, lda, afac, lda )
424 *
425 * Compute the L*D*L**T or U*D*U**T factorization of the
426 * matrix. IWORK stores details of the interchanges and
427 * the block structure of D. AINV is a work array for
428 * block factorization, LWORK is the length of AINV.
429 *
430  lwork = max( 2, nb )*lda
431  srnamt = 'DSYTRF_ROOK'
432  CALL dsytrf_rook( uplo, n, afac, lda, iwork, ainv,
433  \$ lwork, info )
434 *
435 * Adjust the expected value of INFO to account for
436 * pivoting.
437 *
438  k = izero
439  IF( k.GT.0 ) THEN
440  100 CONTINUE
441  IF( iwork( k ).LT.0 ) THEN
442  IF( iwork( k ).NE.-k ) THEN
443  k = -iwork( k )
444  GO TO 100
445  END IF
446  ELSE IF( iwork( k ).NE.k ) THEN
447  k = iwork( k )
448  GO TO 100
449  END IF
450  END IF
451 *
452 * Check error code from DSYTRF_ROOK and handle error.
453 *
454  IF( info.NE.k)
455  \$ CALL alaerh( path, 'DSYTRF_ROOK', info, k,
456  \$ uplo, n, n, -1, -1, nb, imat,
457  \$ nfail, nerrs, nout )
458 *
459 * Set the condition estimate flag if the INFO is not 0.
460 *
461  IF( info.NE.0 ) THEN
462  trfcon = .true.
463  ELSE
464  trfcon = .false.
465  END IF
466 *
467 *+ TEST 1
468 * Reconstruct matrix from factors and compute residual.
469 *
470  CALL dsyt01_rook( uplo, n, a, lda, afac, lda, iwork,
471  \$ ainv, lda, rwork, result( 1 ) )
472  nt = 1
473 *
474 *+ TEST 2
475 * Form the inverse and compute the residual,
476 * if the factorization was competed without INFO > 0
477 * (i.e. there is no zero rows and columns).
478 * Do it only for the first block size.
479 *
480  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
481  CALL dlacpy( uplo, n, n, afac, lda, ainv, lda )
482  srnamt = 'DSYTRI_ROOK'
483  CALL dsytri_rook( uplo, n, ainv, lda, iwork, work,
484  \$ info )
485 *
486 * Check error code from DSYTRI_ROOK and handle error.
487 *
488  IF( info.NE.0 )
489  \$ CALL alaerh( path, 'DSYTRI_ROOK', info, -1,
490  \$ uplo, n, n, -1, -1, -1, imat,
491  \$ nfail, nerrs, nout )
492 *
493 * Compute the residual for a symmetric matrix times
494 * its inverse.
495 *
496  CALL dpot03( uplo, n, a, lda, ainv, lda, work, lda,
497  \$ rwork, rcondc, result( 2 ) )
498  nt = 2
499  END IF
500 *
501 * Print information about the tests that did not pass
502 * the threshold.
503 *
504  DO 110 k = 1, nt
505  IF( result( k ).GE.thresh ) THEN
506  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
507  \$ CALL alahd( nout, path )
508  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
509  \$ result( k )
510  nfail = nfail + 1
511  END IF
512  110 CONTINUE
513  nrun = nrun + nt
514 *
515 *+ TEST 3
516 * Compute largest element in U or L
517 *
518  result( 3 ) = zero
519  dtemp = zero
520 *
521  const = one / ( one-alpha )
522 *
523  IF( iuplo.EQ.1 ) THEN
524 *
525 * Compute largest element in U
526 *
527  k = n
528  120 CONTINUE
529  IF( k.LE.1 )
530  \$ GO TO 130
531 *
532  IF( iwork( k ).GT.zero ) THEN
533 *
534 * Get max absolute value from elements
535 * in column k in in U
536 *
537  dtemp = dlange( 'M', k-1, 1,
538  \$ afac( ( k-1 )*lda+1 ), lda, rwork )
539  ELSE
540 *
541 * Get max absolute value from elements
542 * in columns k and k-1 in U
543 *
544  dtemp = dlange( 'M', k-2, 2,
545  \$ afac( ( k-2 )*lda+1 ), lda, rwork )
546  k = k - 1
547 *
548  END IF
549 *
550 * DTEMP should be bounded by CONST
551 *
552  dtemp = dtemp - const + thresh
553  IF( dtemp.GT.result( 3 ) )
554  \$ result( 3 ) = dtemp
555 *
556  k = k - 1
557 *
558  GO TO 120
559  130 CONTINUE
560 *
561  ELSE
562 *
563 * Compute largest element in L
564 *
565  k = 1
566  140 CONTINUE
567  IF( k.GE.n )
568  \$ GO TO 150
569 *
570  IF( iwork( k ).GT.zero ) THEN
571 *
572 * Get max absolute value from elements
573 * in column k in in L
574 *
575  dtemp = dlange( 'M', n-k, 1,
576  \$ afac( ( k-1 )*lda+k+1 ), lda, rwork )
577  ELSE
578 *
579 * Get max absolute value from elements
580 * in columns k and k+1 in L
581 *
582  dtemp = dlange( 'M', n-k-1, 2,
583  \$ afac( ( k-1 )*lda+k+2 ), lda, rwork )
584  k = k + 1
585 *
586  END IF
587 *
588 * DTEMP should be bounded by CONST
589 *
590  dtemp = dtemp - const + thresh
591  IF( dtemp.GT.result( 3 ) )
592  \$ result( 3 ) = dtemp
593 *
594  k = k + 1
595 *
596  GO TO 140
597  150 CONTINUE
598  END IF
599 *
600 *
601 *+ TEST 4
602 * Compute largest 2-Norm (condition number)
603 * of 2-by-2 diag blocks
604 *
605  result( 4 ) = zero
606  dtemp = zero
607 *
608  const = ( one+alpha ) / ( one-alpha )
609  CALL dlacpy( uplo, n, n, afac, lda, ainv, lda )
610 *
611  IF( iuplo.EQ.1 ) THEN
612 *
613 * Loop backward for UPLO = 'U'
614 *
615  k = n
616  160 CONTINUE
617  IF( k.LE.1 )
618  \$ GO TO 170
619 *
620  IF( iwork( k ).LT.zero ) THEN
621 *
622 * Get the two singular values
623 * (real and non-negative) of a 2-by-2 block,
624 * store them in RWORK array
625 *
626  block( 1, 1 ) = afac( ( k-2 )*lda+k-1 )
627  block( 1, 2 ) = afac( (k-1)*lda+k-1 )
628  block( 2, 1 ) = block( 1, 2 )
629  block( 2, 2 ) = afac( (k-1)*lda+k )
630 *
631  CALL dgesvd( 'N', 'N', 2, 2, block, 2, rwork,
632  \$ ddummy, 1, ddummy, 1,
633  \$ work, 10, info )
634 *
635  sing_max = rwork( 1 )
636  sing_min = rwork( 2 )
637 *
638  dtemp = sing_max / sing_min
639 *
640 * DTEMP should be bounded by CONST
641 *
642  dtemp = dtemp - const + thresh
643  IF( dtemp.GT.result( 4 ) )
644  \$ result( 4 ) = dtemp
645  k = k - 1
646 *
647  END IF
648 *
649  k = k - 1
650 *
651  GO TO 160
652  170 CONTINUE
653 *
654  ELSE
655 *
656 * Loop forward for UPLO = 'L'
657 *
658  k = 1
659  180 CONTINUE
660  IF( k.GE.n )
661  \$ GO TO 190
662 *
663  IF( iwork( k ).LT.zero ) THEN
664 *
665 * Get the two singular values
666 * (real and non-negative) of a 2-by-2 block,
667 * store them in RWORK array
668 *
669  block( 1, 1 ) = afac( ( k-1 )*lda+k )
670  block( 2, 1 ) = afac( ( k-1 )*lda+k+1 )
671  block( 1, 2 ) = block( 2, 1 )
672  block( 2, 2 ) = afac( k*lda+k+1 )
673 *
674  CALL dgesvd( 'N', 'N', 2, 2, block, 2, rwork,
675  \$ ddummy, 1, ddummy, 1,
676  \$ work, 10, info )
677 *
678 *
679  sing_max = rwork( 1 )
680  sing_min = rwork( 2 )
681 *
682  dtemp = sing_max / sing_min
683 *
684 * DTEMP should be bounded by CONST
685 *
686  dtemp = dtemp - const + thresh
687  IF( dtemp.GT.result( 4 ) )
688  \$ result( 4 ) = dtemp
689  k = k + 1
690 *
691  END IF
692 *
693  k = k + 1
694 *
695  GO TO 180
696  190 CONTINUE
697  END IF
698 *
699 * Print information about the tests that did not pass
700 * the threshold.
701 *
702  DO 200 k = 3, 4
703  IF( result( k ).GE.thresh ) THEN
704  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
705  \$ CALL alahd( nout, path )
706  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
707  \$ result( k )
708  nfail = nfail + 1
709  END IF
710  200 CONTINUE
711  nrun = nrun + 2
712 *
713 * Skip the other tests if this is not the first block
714 * size.
715 *
716  IF( inb.GT.1 )
717  \$ GO TO 240
718 *
719 * Do only the condition estimate if INFO is not 0.
720 *
721  IF( trfcon ) THEN
722  rcondc = zero
723  GO TO 230
724  END IF
725 *
726 * Do for each value of NRHS in NSVAL.
727 *
728  DO 220 irhs = 1, nns
729  nrhs = nsval( irhs )
730 *
731 *+ TEST 5 ( Using TRS_ROOK)
732 * Solve and compute residual for A * X = B.
733 *
734 * Choose a set of NRHS random solution vectors
735 * stored in XACT and set up the right hand side B
736 *
737  srnamt = 'DLARHS'
738  CALL dlarhs( matpath, xtype, uplo, ' ', n, n,
739  \$ kl, ku, nrhs, a, lda, xact, lda,
740  \$ b, lda, iseed, info )
741  CALL dlacpy( 'Full', n, nrhs, b, lda, x, lda )
742 *
743  srnamt = 'DSYTRS_ROOK'
744  CALL dsytrs_rook( uplo, n, nrhs, afac, lda, iwork,
745  \$ x, lda, info )
746 *
747 * Check error code from DSYTRS_ROOK and handle error.
748 *
749  IF( info.NE.0 )
750  \$ CALL alaerh( path, 'DSYTRS_ROOK', info, 0,
751  \$ uplo, n, n, -1, -1, nrhs, imat,
752  \$ nfail, nerrs, nout )
753 *
754  CALL dlacpy( 'Full', n, nrhs, b, lda, work, lda )
755 *
756 * Compute the residual for the solution
757 *
758  CALL dpot02( uplo, n, nrhs, a, lda, x, lda, work,
759  \$ lda, rwork, result( 5 ) )
760 *
761 *+ TEST 6
762 * Check solution from generated exact solution.
763 *
764  CALL dget04( n, nrhs, x, lda, xact, lda, rcondc,
765  \$ result( 6 ) )
766 *
767 * Print information about the tests that did not pass
768 * the threshold.
769 *
770  DO 210 k = 5, 6
771  IF( result( k ).GE.thresh ) THEN
772  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
773  \$ CALL alahd( nout, path )
774  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
775  \$ imat, k, result( k )
776  nfail = nfail + 1
777  END IF
778  210 CONTINUE
779  nrun = nrun + 2
780 *
781 * End do for each value of NRHS in NSVAL.
782 *
783  220 CONTINUE
784 *
785 *+ TEST 7
786 * Get an estimate of RCOND = 1/CNDNUM.
787 *
788  230 CONTINUE
789  anorm = dlansy( '1', uplo, n, a, lda, rwork )
790  srnamt = 'DSYCON_ROOK'
791  CALL dsycon_rook( uplo, n, afac, lda, iwork, anorm,
792  \$ rcond, work, iwork( n+1 ), info )
793 *
794 * Check error code from DSYCON_ROOK and handle error.
795 *
796  IF( info.NE.0 )
797  \$ CALL alaerh( path, 'DSYCON_ROOK', info, 0,
798  \$ uplo, n, n, -1, -1, -1, imat,
799  \$ nfail, nerrs, nout )
800 *
801 * Compute the test ratio to compare to values of RCOND
802 *
803  result( 7 ) = dget06( rcond, rcondc )
804 *
805 * Print information about the tests that did not pass
806 * the threshold.
807 *
808  IF( result( 7 ).GE.thresh ) THEN
809  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
810  \$ CALL alahd( nout, path )
811  WRITE( nout, fmt = 9997 )uplo, n, imat, 7,
812  \$ result( 7 )
813  nfail = nfail + 1
814  END IF
815  nrun = nrun + 1
816  240 CONTINUE
817 *
818  250 CONTINUE
819  260 CONTINUE
820  270 CONTINUE
821 *
822 * Print a summary of the results.
823 *
824  CALL alasum( path, nout, nfail, nrun, nerrs )
825 *
826  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
827  \$ i2, ', test ', i2, ', ratio =', g12.5 )
828  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
829  \$ i2, ', test(', i2, ') =', g12.5 )
830  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
831  \$ ', test(', i2, ') =', g12.5 )
832  RETURN
833 *
834 * End of DCHKSY_ROOK
835 *
836  END
subroutine dchksy_rook(DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
DCHKSY_ROOK
Definition: dchksy_rook.f:173
subroutine dsyt01_rook(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
DSYT01_ROOK
Definition: dsyt01_rook.f:126
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:95
subroutine dsytrs_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
DSYTRS_ROOK
Definition: dsytrs_rook.f:138
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine dlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
DLARHS
Definition: dlarhs.f:206
subroutine dlacpy(UPLO, M, N, A, LDA, B, LDB)
DLACPY copies all or part of one two-dimensional array to another.
Definition: dlacpy.f:105
subroutine dsytri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
DSYTRI_ROOK
Definition: dsytri_rook.f:131
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine dsycon_rook(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, IWORK, INFO)
DSYCON_ROOK
Definition: dsycon_rook.f:146
subroutine dpot03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
DPOT03
Definition: dpot03.f:127
subroutine dlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
DLATB4
Definition: dlatb4.f:122
subroutine dget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
DGET04
Definition: dget04.f:104
subroutine derrsy(PATH, NUNIT)
DERRSY
Definition: derrsy.f:57
subroutine dlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
DLATMS
Definition: dlatms.f:323
subroutine dsytrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
DSYTRF_ROOK
Definition: dsytrf_rook.f:210
subroutine dgesvd(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, INFO)
DGESVD computes the singular value decomposition (SVD) for GE matrices
Definition: dgesvd.f:213
subroutine dpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
DPOT02
Definition: dpot02.f:129
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75