LAPACK  3.4.2 LAPACK: Linear Algebra PACKage
dlarfb.f File Reference

Go to the source code of this file.

## Functions/Subroutines

subroutine dlarfb (SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.

## Function/Subroutine Documentation

 subroutine dlarfb ( character SIDE, character TRANS, character DIRECT, character STOREV, integer M, integer N, integer K, double precision, dimension( ldv, * ) V, integer LDV, double precision, dimension( ldt, * ) T, integer LDT, double precision, dimension( ldc, * ) C, integer LDC, double precision, dimension( ldwork, * ) WORK, integer LDWORK )

DLARFB applies a block reflector or its transpose to a general rectangular matrix.

Purpose:
``` DLARFB applies a real block reflector H or its transpose H**T to a
real m by n matrix C, from either the left or the right.```
Parameters:
 [in] SIDE ``` SIDE is CHARACTER*1 = 'L': apply H or H**T from the Left = 'R': apply H or H**T from the Right``` [in] TRANS ``` TRANS is CHARACTER*1 = 'N': apply H (No transpose) = 'T': apply H**T (Transpose)``` [in] DIRECT ``` DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = 'F': H = H(1) H(2) . . . H(k) (Forward) = 'B': H = H(k) . . . H(2) H(1) (Backward)``` [in] STOREV ``` STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = 'C': Columnwise = 'R': Rowwise``` [in] M ``` M is INTEGER The number of rows of the matrix C.``` [in] N ``` N is INTEGER The number of columns of the matrix C.``` [in] K ``` K is INTEGER The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector).``` [in] V ``` V is DOUBLE PRECISION array, dimension (LDV,K) if STOREV = 'C' (LDV,M) if STOREV = 'R' and SIDE = 'L' (LDV,N) if STOREV = 'R' and SIDE = 'R' The matrix V. See Further Details.``` [in] LDV ``` LDV is INTEGER The leading dimension of the array V. If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); if STOREV = 'R', LDV >= K.``` [in] T ``` T is DOUBLE PRECISION array, dimension (LDT,K) The triangular k by k matrix T in the representation of the block reflector.``` [in] LDT ``` LDT is INTEGER The leading dimension of the array T. LDT >= K.``` [in,out] C ``` C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the m by n matrix C. On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.``` [in] LDC ``` LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).``` [out] WORK ` WORK is DOUBLE PRECISION array, dimension (LDWORK,K)` [in] LDWORK ``` LDWORK is INTEGER The leading dimension of the array WORK. If SIDE = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK >= max(1,M).```
Date:
September 2012
Further Details:
```  The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.

DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':

V = (  1       )                 V = (  1 v1 v1 v1 v1 )
( v1  1    )                     (     1 v2 v2 v2 )
( v1 v2  1 )                     (        1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )

DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':

V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
( v1 v2 v3 )                     ( v2 v2 v2  1    )
(  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
(     1 v3 )
(        1 )```

Definition at line 195 of file dlarfb.f.

Here is the call graph for this function:

Here is the caller graph for this function: