LAPACK  3.4.2 LAPACK: Linear Algebra PACKage
dstev.f File Reference

Go to the source code of this file.

## Functions/Subroutines

subroutine dstev (JOBZ, N, D, E, Z, LDZ, WORK, INFO)
DSTEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

## Function/Subroutine Documentation

 subroutine dstev ( character JOBZ, integer N, double precision, dimension( * ) D, double precision, dimension( * ) E, double precision, dimension( ldz, * ) Z, integer LDZ, double precision, dimension( * ) WORK, integer INFO )

DSTEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

``` DSTEV computes all eigenvalues and, optionally, eigenvectors of a
 [in] JOBZ ``` JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors.``` [in] N ``` N is INTEGER The order of the matrix. N >= 0.``` [in,out] D ``` D is DOUBLE PRECISION array, dimension (N) On entry, the n diagonal elements of the tridiagonal matrix A. On exit, if INFO = 0, the eigenvalues in ascending order.``` [in,out] E ``` E is DOUBLE PRECISION array, dimension (N-1) On entry, the (n-1) subdiagonal elements of the tridiagonal matrix A, stored in elements 1 to N-1 of E. On exit, the contents of E are destroyed.``` [out] Z ``` Z is DOUBLE PRECISION array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with D(i). If JOBZ = 'N', then Z is not referenced.``` [in] LDZ ``` LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N).``` [out] WORK ``` WORK is DOUBLE PRECISION array, dimension (max(1,2*N-2)) If JOBZ = 'N', WORK is not referenced.``` [out] INFO ``` INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of E did not converge to zero.```