LAPACK
3.4.2
LAPACK: Linear Algebra PACKage

Go to the source code of this file.
Functions/Subroutines  
subroutine  cggrqf (M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK, INFO) 
CGGRQF 
subroutine cggrqf  (  integer  M, 
integer  P,  
integer  N,  
complex, dimension( lda, * )  A,  
integer  LDA,  
complex, dimension( * )  TAUA,  
complex, dimension( ldb, * )  B,  
integer  LDB,  
complex, dimension( * )  TAUB,  
complex, dimension( * )  WORK,  
integer  LWORK,  
integer  INFO  
) 
CGGRQF
Download CGGRQF + dependencies [TGZ] [ZIP] [TXT]CGGRQF computes a generalized RQ factorization of an MbyN matrix A and a PbyN matrix B: A = R*Q, B = Z*T*Q, where Q is an NbyN unitary matrix, Z is a PbyP unitary matrix, and R and T assume one of the forms: if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) MN, NM M ( R21 ) N N where R12 or R21 is upper triangular, and if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, ( 0 ) PN P NP N where T11 is upper triangular. In particular, if B is square and nonsingular, the GRQ factorization of A and B implicitly gives the RQ factorization of A*inv(B): A*inv(B) = (R*inv(T))*Z**H where inv(B) denotes the inverse of the matrix B, and Z**H denotes the conjugate transpose of the matrix Z.
[in]  M  M is INTEGER The number of rows of the matrix A. M >= 0. 
[in]  P  P is INTEGER The number of rows of the matrix B. P >= 0. 
[in]  N  N is INTEGER The number of columns of the matrices A and B. N >= 0. 
[in,out]  A  A is COMPLEX array, dimension (LDA,N) On entry, the MbyN matrix A. On exit, if M <= N, the upper triangle of the subarray A(1:M,NM+1:N) contains the MbyM upper triangular matrix R; if M > N, the elements on and above the (MN)th subdiagonal contain the MbyN upper trapezoidal matrix R; the remaining elements, with the array TAUA, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). 
[in]  LDA  LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). 
[out]  TAUA  TAUA is COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors which represent the unitary matrix Q (see Further Details). 
[in,out]  B  B is COMPLEX array, dimension (LDB,N) On entry, the PbyN matrix B. On exit, the elements on and above the diagonal of the array contain the min(P,N)byN upper trapezoidal matrix T (T is upper triangular if P >= N); the elements below the diagonal, with the array TAUB, represent the unitary matrix Z as a product of elementary reflectors (see Further Details). 
[in]  LDB  LDB is INTEGER The leading dimension of the array B. LDB >= max(1,P). 
[out]  TAUB  TAUB is COMPLEX array, dimension (min(P,N)) The scalar factors of the elementary reflectors which represent the unitary matrix Z (see Further Details). 
[out]  WORK  WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. 
[in]  LWORK  LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,N,M,P). For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), where NB1 is the optimal blocksize for the RQ factorization of an MbyN matrix, NB2 is the optimal blocksize for the QR factorization of a PbyN matrix, and NB3 is the optimal blocksize for a call of CUNMRQ. If LWORK = 1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. 
[out]  INFO  INFO is INTEGER = 0: successful exit < 0: if INFO=i, the ith argument had an illegal value. 
The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I  taua * v * v**H where taua is a complex scalar, and v is a complex vector with v(nk+i+1:n) = 0 and v(nk+i) = 1; v(1:nk+i1) is stored on exit in A(mk+i,1:nk+i1), and taua in TAUA(i). To form Q explicitly, use LAPACK subroutine CUNGRQ. To use Q to update another matrix, use LAPACK subroutine CUNMRQ. The matrix Z is represented as a product of elementary reflectors Z = H(1) H(2) . . . H(k), where k = min(p,n). Each H(i) has the form H(i) = I  taub * v * v**H where taub is a complex scalar, and v is a complex vector with v(1:i1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), and taub in TAUB(i). To form Z explicitly, use LAPACK subroutine CUNGQR. To use Z to update another matrix, use LAPACK subroutine CUNMQR.
Definition at line 214 of file cggrqf.f.