LAPACK  3.4.2 LAPACK: Linear Algebra PACKage
zlatdf.f File Reference

Go to the source code of this file.

## Functions/Subroutines

subroutine zlatdf (IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV, JPIV)
ZLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.

## Function/Subroutine Documentation

 subroutine zlatdf ( integer IJOB, integer N, complex*16, dimension( ldz, * ) Z, integer LDZ, complex*16, dimension( * ) RHS, double precision RDSUM, double precision RDSCAL, integer, dimension( * ) IPIV, integer, dimension( * ) JPIV )

ZLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.

Purpose:
ZLATDF computes the contribution to the reciprocal Dif-estimate
by solving for x in Z * x = b, where b is chosen such that the norm
of x is as large as possible. It is assumed that LU decomposition
of Z has been computed by ZGETC2. On entry RHS = f holds the
contribution from earlier solved sub-systems, and on return RHS = x.

The factorization of Z returned by ZGETC2 has the form
Z = P * L * U * Q, where P and Q are permutation matrices. L is lower
triangular with unit diagonal elements and U is upper triangular.
Parameters:
 [in] IJOB IJOB is INTEGER IJOB = 2: First compute an approximative null-vector e of Z using ZGECON, e is normalized and solve for Zx = +-e - f with the sign giving the greater value of 2-norm(x). About 5 times as expensive as Default. IJOB .ne. 2: Local look ahead strategy where all entries of the r.h.s. b is choosen as either +1 or -1. Default. [in] N N is INTEGER The number of columns of the matrix Z. [in] Z Z is DOUBLE PRECISION array, dimension (LDZ, N) On entry, the LU part of the factorization of the n-by-n matrix Z computed by ZGETC2: Z = P * L * U * Q [in] LDZ LDZ is INTEGER The leading dimension of the array Z. LDA >= max(1, N). [in,out] RHS RHS is DOUBLE PRECISION array, dimension (N). On entry, RHS contains contributions from other subsystems. On exit, RHS contains the solution of the subsystem with entries according to the value of IJOB (see above). [in,out] RDSUM RDSUM is DOUBLE PRECISION On entry, the sum of squares of computed contributions to the Dif-estimate under computation by ZTGSYL, where the scaling factor RDSCAL (see below) has been factored out. On exit, the corresponding sum of squares updated with the contributions from the current sub-system. If TRANS = 'T' RDSUM is not touched. NOTE: RDSUM only makes sense when ZTGSY2 is called by CTGSYL. [in,out] RDSCAL RDSCAL is DOUBLE PRECISION On entry, scaling factor used to prevent overflow in RDSUM. On exit, RDSCAL is updated w.r.t. the current contributions in RDSUM. If TRANS = 'T', RDSCAL is not touched. NOTE: RDSCAL only makes sense when ZTGSY2 is called by ZTGSYL. [in] IPIV IPIV is INTEGER array, dimension (N). The pivot indices; for 1 <= i <= N, row i of the matrix has been interchanged with row IPIV(i). [in] JPIV JPIV is INTEGER array, dimension (N). The pivot indices; for 1 <= j <= N, column j of the matrix has been interchanged with column JPIV(j).
Date:
September 2012
Further Details:
This routine is a further developed implementation of algorithm BSOLVE in [1] using complete pivoting in the LU factorization.
Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.
References:
[1] Bo Kagstrom and Lars Westin, Generalized Schur Methods with Condition Estimators for Solving the Generalized Sylvester Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
[2] Peter Poromaa, On Efficient and Robust Estimators for the Separation between two Regular Matrix Pairs with Applications in Condition Estimation. Report UMINF-95.05, Department of Computing Science, Umea University, S-901 87 Umea, Sweden,

Definition at line 169 of file zlatdf.f.

Here is the call graph for this function:

Here is the caller graph for this function: