LAPACK  3.4.2 LAPACK: Linear Algebra PACKage
dsfrk.f File Reference

Go to the source code of this file.

## Functions/Subroutines

subroutine dsfrk (TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C)
DSFRK performs a symmetric rank-k operation for matrix in RFP format.

## Function/Subroutine Documentation

 subroutine dsfrk ( character TRANSR, character UPLO, character TRANS, integer N, integer K, double precision ALPHA, double precision, dimension( lda, * ) A, integer LDA, double precision BETA, double precision, dimension( * ) C )

DSFRK performs a symmetric rank-k operation for matrix in RFP format.

Purpose:
``` Level 3 BLAS like routine for C in RFP Format.

DSFRK performs one of the symmetric rank--k operations

C := alpha*A*A**T + beta*C,

or

C := alpha*A**T*A + beta*C,

where alpha and beta are real scalars, C is an n--by--n symmetric
matrix and A is an n--by--k matrix in the first case and a k--by--n
matrix in the second case.```
Parameters:
 [in] TRANSR ``` TRANSR is CHARACTER*1 = 'N': The Normal Form of RFP A is stored; = 'T': The Transpose Form of RFP A is stored.``` [in] UPLO ``` UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit.``` [in] TRANS ``` TRANS is CHARACTER*1 On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C. TRANS = 'T' or 't' C := alpha*A**T*A + beta*C. Unchanged on exit.``` [in] N ``` N is INTEGER On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit.``` [in] K ``` K is INTEGER On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrix A, and on entry with TRANS = 'T' or 't', K specifies the number of rows of the matrix A. K must be at least zero. Unchanged on exit.``` [in] ALPHA ``` ALPHA is DOUBLE PRECISION On entry, ALPHA specifies the scalar alpha. Unchanged on exit.``` [in] A ``` A is DOUBLE PRECISION array, dimension (LDA,ka) where KA is K when TRANS = 'N' or 'n', and is N otherwise. Before entry with TRANS = 'N' or 'n', the leading N--by--K part of the array A must contain the matrix A, otherwise the leading K--by--N part of the array A must contain the matrix A. Unchanged on exit.``` [in] LDA ``` LDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit.``` [in] BETA ``` BETA is DOUBLE PRECISION On entry, BETA specifies the scalar beta. Unchanged on exit.``` [in,out] C ``` C is DOUBLE PRECISION array, dimension (NT) NT = N*(N+1)/2. On entry, the symmetric matrix C in RFP Format. RFP Format is described by TRANSR, UPLO and N.```
Date:
September 2012

Definition at line 166 of file dsfrk.f.

Here is the call graph for this function:

Here is the caller graph for this function: