001: DOUBLE PRECISION FUNCTION DLANGB( NORM, N, KL, KU, AB, LDAB, 002: $ WORK ) 003: * 004: * -- LAPACK auxiliary routine (version 3.2) -- 005: * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 006: * November 2006 007: * 008: * .. Scalar Arguments .. 009: CHARACTER NORM 010: INTEGER KL, KU, LDAB, N 011: * .. 012: * .. Array Arguments .. 013: DOUBLE PRECISION AB( LDAB, * ), WORK( * ) 014: * .. 015: * 016: * Purpose 017: * ======= 018: * 019: * DLANGB returns the value of the one norm, or the Frobenius norm, or 020: * the infinity norm, or the element of largest absolute value of an 021: * n by n band matrix A, with kl sub-diagonals and ku super-diagonals. 022: * 023: * Description 024: * =========== 025: * 026: * DLANGB returns the value 027: * 028: * DLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm' 029: * ( 030: * ( norm1(A), NORM = '1', 'O' or 'o' 031: * ( 032: * ( normI(A), NORM = 'I' or 'i' 033: * ( 034: * ( normF(A), NORM = 'F', 'f', 'E' or 'e' 035: * 036: * where norm1 denotes the one norm of a matrix (maximum column sum), 037: * normI denotes the infinity norm of a matrix (maximum row sum) and 038: * normF denotes the Frobenius norm of a matrix (square root of sum of 039: * squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. 040: * 041: * Arguments 042: * ========= 043: * 044: * NORM (input) CHARACTER*1 045: * Specifies the value to be returned in DLANGB as described 046: * above. 047: * 048: * N (input) INTEGER 049: * The order of the matrix A. N >= 0. When N = 0, DLANGB is 050: * set to zero. 051: * 052: * KL (input) INTEGER 053: * The number of sub-diagonals of the matrix A. KL >= 0. 054: * 055: * KU (input) INTEGER 056: * The number of super-diagonals of the matrix A. KU >= 0. 057: * 058: * AB (input) DOUBLE PRECISION array, dimension (LDAB,N) 059: * The band matrix A, stored in rows 1 to KL+KU+1. The j-th 060: * column of A is stored in the j-th column of the array AB as 061: * follows: 062: * AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). 063: * 064: * LDAB (input) INTEGER 065: * The leading dimension of the array AB. LDAB >= KL+KU+1. 066: * 067: * WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), 068: * where LWORK >= N when NORM = 'I'; otherwise, WORK is not 069: * referenced. 070: * 071: * ===================================================================== 072: * 073: * 074: * .. Parameters .. 075: DOUBLE PRECISION ONE, ZERO 076: PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 077: * .. 078: * .. Local Scalars .. 079: INTEGER I, J, K, L 080: DOUBLE PRECISION SCALE, SUM, VALUE 081: * .. 082: * .. External Subroutines .. 083: EXTERNAL DLASSQ 084: * .. 085: * .. External Functions .. 086: LOGICAL LSAME 087: EXTERNAL LSAME 088: * .. 089: * .. Intrinsic Functions .. 090: INTRINSIC ABS, MAX, MIN, SQRT 091: * .. 092: * .. Executable Statements .. 093: * 094: IF( N.EQ.0 ) THEN 095: VALUE = ZERO 096: ELSE IF( LSAME( NORM, 'M' ) ) THEN 097: * 098: * Find max(abs(A(i,j))). 099: * 100: VALUE = ZERO 101: DO 20 J = 1, N 102: DO 10 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 ) 103: VALUE = MAX( VALUE, ABS( AB( I, J ) ) ) 104: 10 CONTINUE 105: 20 CONTINUE 106: ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN 107: * 108: * Find norm1(A). 109: * 110: VALUE = ZERO 111: DO 40 J = 1, N 112: SUM = ZERO 113: DO 30 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 ) 114: SUM = SUM + ABS( AB( I, J ) ) 115: 30 CONTINUE 116: VALUE = MAX( VALUE, SUM ) 117: 40 CONTINUE 118: ELSE IF( LSAME( NORM, 'I' ) ) THEN 119: * 120: * Find normI(A). 121: * 122: DO 50 I = 1, N 123: WORK( I ) = ZERO 124: 50 CONTINUE 125: DO 70 J = 1, N 126: K = KU + 1 - J 127: DO 60 I = MAX( 1, J-KU ), MIN( N, J+KL ) 128: WORK( I ) = WORK( I ) + ABS( AB( K+I, J ) ) 129: 60 CONTINUE 130: 70 CONTINUE 131: VALUE = ZERO 132: DO 80 I = 1, N 133: VALUE = MAX( VALUE, WORK( I ) ) 134: 80 CONTINUE 135: ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN 136: * 137: * Find normF(A). 138: * 139: SCALE = ZERO 140: SUM = ONE 141: DO 90 J = 1, N 142: L = MAX( 1, J-KU ) 143: K = KU + 1 - J + L 144: CALL DLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, SCALE, SUM ) 145: 90 CONTINUE 146: VALUE = SCALE*SQRT( SUM ) 147: END IF 148: * 149: DLANGB = VALUE 150: RETURN 151: * 152: * End of DLANGB 153: * 154: END 155: