```      SUBROUTINE SLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
\$                   ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
LOGICAL            WANTT, WANTZ
*     ..
*     .. Array Arguments ..
REAL               H( LDH, * ), WI( * ), WORK( * ), WR( * ),
\$                   Z( LDZ, * )
*     ..
*
*     Purpose
*     =======
*
*     SLAQR0 computes the eigenvalues of a Hessenberg matrix H
*     and, optionally, the matrices T and Z from the Schur decomposition
*     H = Z T Z**T, where T is an upper quasi-triangular matrix (the
*     Schur form), and Z is the orthogonal matrix of Schur vectors.
*
*     Optionally Z may be postmultiplied into an input orthogonal
*     matrix Q so that this routine can give the Schur factorization
*     of a matrix A which has been reduced to the Hessenberg form H
*     by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
*
*     Arguments
*     =========
*
*     WANTT   (input) LOGICAL
*          = .TRUE. : the full Schur form T is required;
*          = .FALSE.: only eigenvalues are required.
*
*     WANTZ   (input) LOGICAL
*          = .TRUE. : the matrix of Schur vectors Z is required;
*          = .FALSE.: Schur vectors are not required.
*
*     N     (input) INTEGER
*           The order of the matrix H.  N .GE. 0.
*
*     ILO   (input) INTEGER
*     IHI   (input) INTEGER
*           It is assumed that H is already upper triangular in rows
*           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
*           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
*           previous call to SGEBAL, and then passed to SGEHRD when the
*           matrix output by SGEBAL is reduced to Hessenberg form.
*           Otherwise, ILO and IHI should be set to 1 and N,
*           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
*           If N = 0, then ILO = 1 and IHI = 0.
*
*     H     (input/output) REAL array, dimension (LDH,N)
*           On entry, the upper Hessenberg matrix H.
*           On exit, if INFO = 0 and WANTT is .TRUE., then H contains
*           the upper quasi-triangular matrix T from the Schur
*           decomposition (the Schur form); 2-by-2 diagonal blocks
*           (corresponding to complex conjugate pairs of eigenvalues)
*           are returned in standard form, with H(i,i) = H(i+1,i+1)
*           and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
*           .FALSE., then the contents of H are unspecified on exit.
*           (The output value of H when INFO.GT.0 is given under the
*           description of INFO below.)
*
*           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
*           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*
*     LDH   (input) INTEGER
*           The leading dimension of the array H. LDH .GE. max(1,N).
*
*     WR    (output) REAL array, dimension (IHI)
*     WI    (output) REAL array, dimension (IHI)
*           The real and imaginary parts, respectively, of the computed
*           eigenvalues of H(ILO:IHI,ILO:IHI) are stored WR(ILO:IHI)
*           and WI(ILO:IHI). If two eigenvalues are computed as a
*           complex conjugate pair, they are stored in consecutive
*           elements of WR and WI, say the i-th and (i+1)th, with
*           WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
*           the eigenvalues are stored in the same order as on the
*           diagonal of the Schur form returned in H, with
*           WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
*           block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
*           WI(i+1) = -WI(i).
*
*     ILOZ     (input) INTEGER
*     IHIZ     (input) INTEGER
*           Specify the rows of Z to which transformations must be
*           applied if WANTZ is .TRUE..
*           1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
*
*     Z     (input/output) REAL array, dimension (LDZ,IHI)
*           If WANTZ is .FALSE., then Z is not referenced.
*           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
*           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
*           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
*           (The output value of Z when INFO.GT.0 is given under
*           the description of INFO below.)
*
*     LDZ   (input) INTEGER
*           The leading dimension of the array Z.  if WANTZ is .TRUE.
*           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1.
*
*     WORK  (workspace/output) REAL array, dimension LWORK
*           On exit, if LWORK = -1, WORK(1) returns an estimate of
*           the optimal value for LWORK.
*
*     LWORK (input) INTEGER
*           The dimension of the array WORK.  LWORK .GE. max(1,N)
*           is sufficient, but LWORK typically as large as 6*N may
*           be required for optimal performance.  A workspace query
*           to determine the optimal workspace size is recommended.
*
*           If LWORK = -1, then SLAQR0 does a workspace query.
*           In this case, SLAQR0 checks the input parameters and
*           estimates the optimal workspace size for the given
*           values of N, ILO and IHI.  The estimate is returned
*           in WORK(1).  No error message related to LWORK is
*           issued by XERBLA.  Neither H nor Z are accessed.
*
*
*     INFO  (output) INTEGER
*             =  0:  successful exit
*           .GT. 0:  if INFO = i, SLAQR0 failed to compute all of
*                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
*                and WI contain those eigenvalues which have been
*                successfully computed.  (Failures are rare.)
*
*                If INFO .GT. 0 and WANT is .FALSE., then on exit,
*                the remaining unconverged eigenvalues are the eigen-
*                values of the upper Hessenberg matrix rows and
*                columns ILO through INFO of the final, output
*                value of H.
*
*                If INFO .GT. 0 and WANTT is .TRUE., then on exit
*
*           (*)  (initial value of H)*U  = U*(final value of H)
*
*                where U is an orthogonal matrix.  The final
*                value of H is upper Hessenberg and quasi-triangular
*                in rows and columns INFO+1 through IHI.
*
*                If INFO .GT. 0 and WANTZ is .TRUE., then on exit
*
*                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
*                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
*
*                where U is the orthogonal matrix in (*) (regard-
*                less of the value of WANTT.)
*
*                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
*                accessed.
*
*     ================================================================
*     Based on contributions by
*        Karen Braman and Ralph Byers, Department of Mathematics,
*        University of Kansas, USA
*
*     ================================================================
*     References:
*       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
*       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
*       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
*       929--947, 2002.
*
*       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
*       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
*       of Matrix Analysis, volume 23, pages 948--973, 2002.
*
*     ================================================================
*     .. Parameters ..
*
*     ==== Matrices of order NTINY or smaller must be processed by
*     .    SLAHQR because of insufficient subdiagonal scratch space.
*     .    (This is a hard limit.) ====
*
*     ==== Exceptional deflation windows:  try to cure rare
*     .    slow convergence by increasing the size of the
*     .    deflation window after KEXNW iterations. =====
*
*     ==== Exceptional shifts: try to cure rare slow convergence
*     .    with ad-hoc exceptional shifts every KEXSH iterations.
*     .    The constants WILK1 and WILK2 are used to form the
*     .    exceptional shifts. ====
*
INTEGER            NTINY
PARAMETER          ( NTINY = 11 )
INTEGER            KEXNW, KEXSH
PARAMETER          ( KEXNW = 5, KEXSH = 6 )
REAL               WILK1, WILK2
PARAMETER          ( WILK1 = 0.75e0, WILK2 = -0.4375e0 )
REAL               ZERO, ONE
PARAMETER          ( ZERO = 0.0e0, ONE = 1.0e0 )
*     ..
*     .. Local Scalars ..
REAL               AA, BB, CC, CS, DD, SN, SS, SWAP
INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
\$                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
\$                   LWKOPT, NDFL, NH, NHO, NIBBLE, NMIN, NS, NSMAX,
\$                   NSR, NVE, NW, NWMAX, NWR
LOGICAL            NWINC, SORTED
CHARACTER          JBCMPZ*2
*     ..
*     .. External Functions ..
INTEGER            ILAENV
EXTERNAL           ILAENV
*     ..
*     .. Local Arrays ..
REAL               ZDUM( 1, 1 )
*     ..
*     .. External Subroutines ..
EXTERNAL           SLACPY, SLAHQR, SLANV2, SLAQR3, SLAQR4, SLAQR5
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          ABS, INT, MAX, MIN, MOD, REAL
*     ..
*     .. Executable Statements ..
INFO = 0
*
*     ==== Quick return for N = 0: nothing to do. ====
*
IF( N.EQ.0 ) THEN
WORK( 1 ) = ONE
RETURN
END IF
*
*     ==== Set up job flags for ILAENV. ====
*
IF( WANTT ) THEN
JBCMPZ( 1: 1 ) = 'S'
ELSE
JBCMPZ( 1: 1 ) = 'E'
END IF
IF( WANTZ ) THEN
JBCMPZ( 2: 2 ) = 'V'
ELSE
JBCMPZ( 2: 2 ) = 'N'
END IF
*
*     ==== Tiny matrices must use SLAHQR. ====
*
IF( N.LE.NTINY ) THEN
*
*        ==== Estimate optimal workspace. ====
*
LWKOPT = 1
IF( LWORK.NE.-1 )
\$      CALL SLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
\$                   ILOZ, IHIZ, Z, LDZ, INFO )
ELSE
*
*        ==== Use small bulge multi-shift QR with aggressive early
*        .    deflation on larger-than-tiny matrices. ====
*
*        ==== Hope for the best. ====
*
INFO = 0
*
*        ==== NWR = recommended deflation window size.  At this
*        .    point,  N .GT. NTINY = 11, so there is enough
*        .    subdiagonal workspace for NWR.GE.2 as required.
*        .    (In fact, there is enough subdiagonal space for
*        .    NWR.GE.3.) ====
*
NWR = ILAENV( 13, 'SLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
NWR = MAX( 2, NWR )
NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
NW = NWR
*
*        ==== NSR = recommended number of simultaneous shifts.
*        .    At this point N .GT. NTINY = 11, so there is at
*        .    enough subdiagonal workspace for NSR to be even
*        .    and greater than or equal to two as required. ====
*
NSR = ILAENV( 15, 'SLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
*
*        ==== Estimate optimal workspace ====
*
*        ==== Workspace query call to SLAQR3 ====
*
CALL SLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
\$                IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH,
\$                N, H, LDH, WORK, -1 )
*
*        ==== Optimal workspace = MAX(SLAQR5, SLAQR3) ====
*
LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
*
*        ==== Quick return in case of workspace query. ====
*
IF( LWORK.EQ.-1 ) THEN
WORK( 1 ) = REAL( LWKOPT )
RETURN
END IF
*
*        ==== SLAHQR/SLAQR0 crossover point ====
*
NMIN = ILAENV( 12, 'SLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
NMIN = MAX( NTINY, NMIN )
*
*        ==== Nibble crossover point ====
*
NIBBLE = ILAENV( 14, 'SLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
NIBBLE = MAX( 0, NIBBLE )
*
*        ==== Accumulate reflections during ttswp?  Use block
*        .    2-by-2 structure during matrix-matrix multiply? ====
*
KACC22 = ILAENV( 16, 'SLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
KACC22 = MAX( 0, KACC22 )
KACC22 = MIN( 2, KACC22 )
*
*        ==== NWMAX = the largest possible deflation window for
*        .    which there is sufficient workspace. ====
*
NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
*
*        ==== NSMAX = the Largest number of simultaneous shifts
*        .    for which there is sufficient workspace. ====
*
NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
NSMAX = NSMAX - MOD( NSMAX, 2 )
*
*        ==== NDFL: an iteration count restarted at deflation. ====
*
NDFL = 1
*
*        ==== ITMAX = iteration limit ====
*
ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
*
*        ==== Last row and column in the active block ====
*
KBOT = IHI
*
*        ==== Main Loop ====
*
DO 80 IT = 1, ITMAX
*
*           ==== Done when KBOT falls below ILO ====
*
IF( KBOT.LT.ILO )
\$         GO TO 90
*
*           ==== Locate active block ====
*
DO 10 K = KBOT, ILO + 1, -1
IF( H( K, K-1 ).EQ.ZERO )
\$            GO TO 20
10       CONTINUE
K = ILO
20       CONTINUE
KTOP = K
*
*           ==== Select deflation window size ====
*
NH = KBOT - KTOP + 1
IF( NDFL.LT.KEXNW .OR. NH.LT.NW ) THEN
*
*              ==== Typical deflation window.  If possible and
*              .    advisable, nibble the entire active block.
*              .    If not, use size NWR or NWR+1 depending upon
*              .    which has the smaller corresponding subdiagonal
*              .    entry (a heuristic). ====
*
NWINC = .TRUE.
IF( NH.LE.MIN( NMIN, NWMAX ) ) THEN
NW = NH
ELSE
NW = MIN( NWR, NH, NWMAX )
IF( NW.LT.NWMAX ) THEN
IF( NW.GE.NH-1 ) THEN
NW = NH
ELSE
KWTOP = KBOT - NW + 1
IF( ABS( H( KWTOP, KWTOP-1 ) ).GT.
\$                      ABS( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
END IF
END IF
END IF
ELSE
*
*              ==== Exceptional deflation window.  If there have
*              .    been no deflations in KEXNW or more iterations,
*              .    then vary the deflation window size.   At first,
*              .    because, larger windows are, in general, more
*              .    powerful than smaller ones, rapidly increase the
*              .    window up to the maximum reasonable and possible.
*              .    Then maybe try a slightly smaller window.  ====
*
IF( NWINC .AND. NW.LT.MIN( NWMAX, NH ) ) THEN
NW = MIN( NWMAX, NH, 2*NW )
ELSE
NWINC = .FALSE.
IF( NW.EQ.NH .AND. NH.GT.2 )
\$               NW = NH - 1
END IF
END IF
*
*           ==== Aggressive early deflation:
*           .    split workspace under the subdiagonal into
*           .      - an nw-by-nw work array V in the lower
*           .        left-hand-corner,
*           .      - an NW-by-at-least-NW-but-more-is-better
*           .        (NW-by-NHO) horizontal work array along
*           .        the bottom edge,
*           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
*           .        vertical work array along the left-hand-edge.
*           .        ====
*
KV = N - NW + 1
KT = NW + 1
NHO = ( N-NW-1 ) - KT + 1
KWV = NW + 2
NVE = ( N-NW ) - KWV + 1
*
*           ==== Aggressive early deflation ====
*
CALL SLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
\$                   IHIZ, Z, LDZ, LS, LD, WR, WI, H( KV, 1 ), LDH,
\$                   NHO, H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH,
\$                   WORK, LWORK )
*
*           ==== Adjust KBOT accounting for new deflations. ====
*
KBOT = KBOT - LD
*
*           ==== KS points to the shifts. ====
*
KS = KBOT - LS + 1
*
*           ==== Skip an expensive QR sweep if there is a (partly
*           .    heuristic) reason to expect that many eigenvalues
*           .    will deflate without it.  Here, the QR sweep is
*           .    skipped if many eigenvalues have just been deflated
*           .    or if the remaining active block is small.
*
IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
\$          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
*
*              ==== NS = nominal number of simultaneous shifts.
*              .    This may be lowered (slightly) if SLAQR3
*              .    did not provide that many shifts. ====
*
NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
NS = NS - MOD( NS, 2 )
*
*              ==== If there have been no deflations
*              .    in a multiple of KEXSH iterations,
*              .    then try exceptional shifts.
*              .    Otherwise use shifts provided by
*              .    SLAQR3 above or from the eigenvalues
*              .    of a trailing principal submatrix. ====
*
IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
KS = KBOT - NS + 1
DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2
SS = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
AA = WILK1*SS + H( I, I )
BB = SS
CC = WILK2*SS
DD = AA
CALL SLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ),
\$                            WR( I ), WI( I ), CS, SN )
30             CONTINUE
IF( KS.EQ.KTOP ) THEN
WR( KS+1 ) = H( KS+1, KS+1 )
WI( KS+1 ) = ZERO
WR( KS ) = WR( KS+1 )
WI( KS ) = WI( KS+1 )
END IF
ELSE
*
*                 ==== Got NS/2 or fewer shifts? Use SLAQR4 or
*                 .    SLAHQR on a trailing principal submatrix to
*                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
*                 .    there is enough space below the subdiagonal
*                 .    to fit an NS-by-NS scratch array.) ====
*
IF( KBOT-KS+1.LE.NS / 2 ) THEN
KS = KBOT - NS + 1
KT = N - NS + 1
CALL SLACPY( 'A', NS, NS, H( KS, KS ), LDH,
\$                            H( KT, 1 ), LDH )
IF( NS.GT.NMIN ) THEN
CALL SLAQR4( .false., .false., NS, 1, NS,
\$                               H( KT, 1 ), LDH, WR( KS ),
\$                               WI( KS ), 1, 1, ZDUM, 1, WORK,
\$                               LWORK, INF )
ELSE
CALL SLAHQR( .false., .false., NS, 1, NS,
\$                               H( KT, 1 ), LDH, WR( KS ),
\$                               WI( KS ), 1, 1, ZDUM, 1, INF )
END IF
KS = KS + INF
*
*                    ==== In case of a rare QR failure use
*                    .    eigenvalues of the trailing 2-by-2
*                    .    principal submatrix.  ====
*
IF( KS.GE.KBOT ) THEN
AA = H( KBOT-1, KBOT-1 )
CC = H( KBOT, KBOT-1 )
BB = H( KBOT-1, KBOT )
DD = H( KBOT, KBOT )
CALL SLANV2( AA, BB, CC, DD, WR( KBOT-1 ),
\$                               WI( KBOT-1 ), WR( KBOT ),
\$                               WI( KBOT ), CS, SN )
KS = KBOT - 1
END IF
END IF
*
IF( KBOT-KS+1.GT.NS ) THEN
*
*                    ==== Sort the shifts (Helps a little)
*                    .    Bubble sort keeps complex conjugate
*                    .    pairs together. ====
*
SORTED = .false.
DO 50 K = KBOT, KS + 1, -1
IF( SORTED )
\$                     GO TO 60
SORTED = .true.
DO 40 I = KS, K - 1
IF( ABS( WR( I ) )+ABS( WI( I ) ).LT.
\$                         ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN
SORTED = .false.
*
SWAP = WR( I )
WR( I ) = WR( I+1 )
WR( I+1 ) = SWAP
*
SWAP = WI( I )
WI( I ) = WI( I+1 )
WI( I+1 ) = SWAP
END IF
40                   CONTINUE
50                CONTINUE
60                CONTINUE
END IF
*
*                 ==== Shuffle shifts into pairs of real shifts
*                 .    and pairs of complex conjugate shifts
*                 .    assuming complex conjugate shifts are
*                 .    they are.)  ====
*
DO 70 I = KBOT, KS + 2, -2
IF( WI( I ).NE.-WI( I-1 ) ) THEN
*
SWAP = WR( I )
WR( I ) = WR( I-1 )
WR( I-1 ) = WR( I-2 )
WR( I-2 ) = SWAP
*
SWAP = WI( I )
WI( I ) = WI( I-1 )
WI( I-1 ) = WI( I-2 )
WI( I-2 ) = SWAP
END IF
70             CONTINUE
END IF
*
*              ==== If there are only two shifts and both are
*              .    real, then use only one.  ====
*
IF( KBOT-KS+1.EQ.2 ) THEN
IF( WI( KBOT ).EQ.ZERO ) THEN
IF( ABS( WR( KBOT )-H( KBOT, KBOT ) ).LT.
\$                   ABS( WR( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
WR( KBOT-1 ) = WR( KBOT )
ELSE
WR( KBOT ) = WR( KBOT-1 )
END IF
END IF
END IF
*
*              ==== Use up to NS of the the smallest magnatiude
*              .    shifts.  If there aren't NS shifts available,
*              .    then use them all, possibly dropping one to
*              .    make the number of shifts even. ====
*
NS = MIN( NS, KBOT-KS+1 )
NS = NS - MOD( NS, 2 )
KS = KBOT - NS + 1
*
*              ==== Small-bulge multi-shift QR sweep:
*              .    split workspace under the subdiagonal into
*              .    - a KDU-by-KDU work array U in the lower
*              .      left-hand-corner,
*              .    - a KDU-by-at-least-KDU-but-more-is-better
*              .      (KDU-by-NHo) horizontal work array WH along
*              .      the bottom edge,
*              .    - and an at-least-KDU-but-more-is-better-by-KDU
*              .      (NVE-by-KDU) vertical work WV arrow along
*              .      the left-hand-edge. ====
*
KDU = 3*NS - 3
KU = N - KDU + 1
KWH = KDU + 1
NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
KWV = KDU + 4
NVE = N - KDU - KWV + 1
*
*              ==== Small-bulge multi-shift QR sweep ====
*
CALL SLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
\$                      WR( KS ), WI( KS ), H, LDH, ILOZ, IHIZ, Z,
\$                      LDZ, WORK, 3, H( KU, 1 ), LDH, NVE,
\$                      H( KWV, 1 ), LDH, NHO, H( KU, KWH ), LDH )
END IF
*
*           ==== Note progress (or the lack of it). ====
*
IF( LD.GT.0 ) THEN
NDFL = 1
ELSE
NDFL = NDFL + 1
END IF
*
*           ==== End of main loop ====
80    CONTINUE
*
*        ==== Iteration limit exceeded.  Set INFO to show where
*        .    the problem occurred and exit. ====
*
INFO = KBOT
90    CONTINUE
END IF
*
*     ==== Return the optimal value of LWORK. ====
*
WORK( 1 ) = REAL( LWKOPT )
*
*     ==== End of SLAQR0 ====
*
END

```