```      SUBROUTINE SLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
\$                   RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
\$                   NAB, WORK, IWORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
INTEGER            IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
REAL               ABSTOL, PIVMIN, RELTOL
*     ..
*     .. Array Arguments ..
INTEGER            IWORK( * ), NAB( MMAX, * ), NVAL( * )
REAL               AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
\$                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SLAEBZ contains the iteration loops which compute and use the
*  function N(w), which is the count of eigenvalues of a symmetric
*  tridiagonal matrix T less than or equal to its argument  w.  It
*  performs a choice of two types of loops:
*
*  IJOB=1, followed by
*  IJOB=2: It takes as input a list of intervals and returns a list of
*          sufficiently small intervals whose union contains the same
*          eigenvalues as the union of the original intervals.
*          The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.
*          The output interval (AB(j,1),AB(j,2)] will contain
*          eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.
*
*  IJOB=3: It performs a binary search in each input interval
*          (AB(j,1),AB(j,2)] for a point  w(j)  such that
*          N(w(j))=NVAL(j), and uses  C(j)  as the starting point of
*          the search.  If such a w(j) is found, then on output
*          AB(j,1)=AB(j,2)=w.  If no such w(j) is found, then on output
*          (AB(j,1),AB(j,2)] will be a small interval containing the
*          point where N(w) jumps through NVAL(j), unless that point
*          lies outside the initial interval.
*
*  Note that the intervals are in all cases half-open intervals,
*  i.e., of the form  (a,b] , which includes  b  but not  a .
*
*  To avoid underflow, the matrix should be scaled so that its largest
*  element is no greater than  overflow**(1/2) * underflow**(1/4)
*  in absolute value.  To assure the most accurate computation
*  of small eigenvalues, the matrix should be scaled to be
*  not much smaller than that, either.
*
*  See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*  Matrix", Report CS41, Computer Science Dept., Stanford
*  University, July 21, 1966
*
*  Note: the arguments are, in general, *not* checked for unreasonable
*  values.
*
*  Arguments
*  =========
*
*  IJOB    (input) INTEGER
*          Specifies what is to be done:
*          = 1:  Compute NAB for the initial intervals.
*          = 2:  Perform bisection iteration to find eigenvalues of T.
*          = 3:  Perform bisection iteration to invert N(w), i.e.,
*                to find a point which has a specified number of
*                eigenvalues of T to its left.
*          Other values will cause SLAEBZ to return with INFO=-1.
*
*  NITMAX  (input) INTEGER
*          The maximum number of "levels" of bisection to be
*          performed, i.e., an interval of width W will not be made
*          smaller than 2^(-NITMAX) * W.  If not all intervals
*          have converged after NITMAX iterations, then INFO is set
*          to the number of non-converged intervals.
*
*  N       (input) INTEGER
*          The dimension n of the tridiagonal matrix T.  It must be at
*          least 1.
*
*  MMAX    (input) INTEGER
*          The maximum number of intervals.  If more than MMAX intervals
*          are generated, then SLAEBZ will quit with INFO=MMAX+1.
*
*  MINP    (input) INTEGER
*          The initial number of intervals.  It may not be greater than
*          MMAX.
*
*  NBMIN   (input) INTEGER
*          The smallest number of intervals that should be processed
*          using a vector loop.  If zero, then only the scalar loop
*          will be used.
*
*  ABSTOL  (input) REAL
*          The minimum (absolute) width of an interval.  When an
*          interval is narrower than ABSTOL, or than RELTOL times the
*          larger (in magnitude) endpoint, then it is considered to be
*          sufficiently small, i.e., converged.  This must be at least
*          zero.
*
*  RELTOL  (input) REAL
*          The minimum relative width of an interval.  When an interval
*          is narrower than ABSTOL, or than RELTOL times the larger (in
*          magnitude) endpoint, then it is considered to be
*          sufficiently small, i.e., converged.  Note: this should
*          always be at least radix*machine epsilon.
*
*  PIVMIN  (input) REAL
*          The minimum absolute value of a "pivot" in the Sturm
*          sequence loop.  This *must* be at least  max |e(j)**2| *
*          safe_min  and at least safe_min, where safe_min is at least
*          the smallest number that can divide one without overflow.
*
*  D       (input) REAL array, dimension (N)
*          The diagonal elements of the tridiagonal matrix T.
*
*  E       (input) REAL array, dimension (N)
*          The offdiagonal elements of the tridiagonal matrix T in
*          positions 1 through N-1.  E(N) is arbitrary.
*
*  E2      (input) REAL array, dimension (N)
*          The squares of the offdiagonal elements of the tridiagonal
*          matrix T.  E2(N) is ignored.
*
*  NVAL    (input/output) INTEGER array, dimension (MINP)
*          If IJOB=1 or 2, not referenced.
*          If IJOB=3, the desired values of N(w).  The elements of NVAL
*          will be reordered to correspond with the intervals in AB.
*          Thus, NVAL(j) on output will not, in general be the same as
*          NVAL(j) on input, but it will correspond with the interval
*          (AB(j,1),AB(j,2)] on output.
*
*  AB      (input/output) REAL array, dimension (MMAX,2)
*          The endpoints of the intervals.  AB(j,1) is  a(j), the left
*          endpoint of the j-th interval, and AB(j,2) is b(j), the
*          right endpoint of the j-th interval.  The input intervals
*          will, in general, be modified, split, and reordered by the
*          calculation.
*
*  C       (input/output) REAL array, dimension (MMAX)
*          If IJOB=1, ignored.
*          If IJOB=2, workspace.
*          If IJOB=3, then on input C(j) should be initialized to the
*          first search point in the binary search.
*
*  MOUT    (output) INTEGER
*          If IJOB=1, the number of eigenvalues in the intervals.
*          If IJOB=2 or 3, the number of intervals output.
*          If IJOB=3, MOUT will equal MINP.
*
*  NAB     (input/output) INTEGER array, dimension (MMAX,2)
*          If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).
*          If IJOB=2, then on input, NAB(i,j) should be set.  It must
*             satisfy the condition:
*             N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),
*             which means that in interval i only eigenvalues
*             NAB(i,1)+1,...,NAB(i,2) will be considered.  Usually,
*             NAB(i,j)=N(AB(i,j)), from a previous call to SLAEBZ with
*             IJOB=1.
*             On output, NAB(i,j) will contain
*             max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of
*             the input interval that the output interval
*             (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the
*             the input values of NAB(k,1) and NAB(k,2).
*          If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),
*             unless N(w) > NVAL(i) for all search points  w , in which
*             case NAB(i,1) will not be modified, i.e., the output
*             value will be the same as the input value (modulo
*             reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)
*             for all search points  w , in which case NAB(i,2) will
*             not be modified.  Normally, NAB should be set to some
*             distinctive value(s) before SLAEBZ is called.
*
*  WORK    (workspace) REAL array, dimension (MMAX)
*          Workspace.
*
*  IWORK   (workspace) INTEGER array, dimension (MMAX)
*          Workspace.
*
*  INFO    (output) INTEGER
*          = 0:       All intervals converged.
*          = 1--MMAX: The last INFO intervals did not converge.
*          = MMAX+1:  More than MMAX intervals were generated.
*
*  Further Details
*  ===============
*
*      This routine is intended to be called only by other LAPACK
*  routines, thus the interface is less user-friendly.  It is intended
*  for two purposes:
*
*  (a) finding eigenvalues.  In this case, SLAEBZ should have one or
*      more initial intervals set up in AB, and SLAEBZ should be called
*      with IJOB=1.  This sets up NAB, and also counts the eigenvalues.
*      Intervals with no eigenvalues would usually be thrown out at
*      this point.  Also, if not all the eigenvalues in an interval i
*      are desired, NAB(i,1) can be increased or NAB(i,2) decreased.
*      For example, set NAB(i,1)=NAB(i,2)-1 to get the largest
*      eigenvalue.  SLAEBZ is then called with IJOB=2 and MMAX
*      no smaller than the value of MOUT returned by the call with
*      IJOB=1.  After this (IJOB=2) call, eigenvalues NAB(i,1)+1
*      through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the
*      tolerance specified by ABSTOL and RELTOL.
*
*  (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).
*      In this case, start with a Gershgorin interval  (a,b).  Set up
*      AB to contain 2 search intervals, both initially (a,b).  One
*      NVAL element should contain  f-1  and the other should contain  l
*      , while C should contain a and b, resp.  NAB(i,1) should be -1
*      and NAB(i,2) should be N+1, to flag an error if the desired
*      interval does not lie in (a,b).  SLAEBZ is then called with
*      IJOB=3.  On exit, if w(f-1) < w(f), then one of the intervals --
*      j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while
*      if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r
*      >= 0, then the interval will have  N(AB(j,1))=NAB(j,1)=f-k and
*      N(AB(j,2))=NAB(j,2)=f+r.  The cases w(l) < w(l+1) and
*      w(l-r)=...=w(l+k) are handled similarly.
*
*  =====================================================================
*
*     .. Parameters ..
REAL               ZERO, TWO, HALF
PARAMETER          ( ZERO = 0.0E0, TWO = 2.0E0,
\$                   HALF = 1.0E0 / TWO )
*     ..
*     .. Local Scalars ..
INTEGER            ITMP1, ITMP2, J, JI, JIT, JP, KF, KFNEW, KL,
\$                   KLNEW
REAL               TMP1, TMP2
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Check for Errors
*
INFO = 0
IF( IJOB.LT.1 .OR. IJOB.GT.3 ) THEN
INFO = -1
RETURN
END IF
*
*     Initialize NAB
*
IF( IJOB.EQ.1 ) THEN
*
*        Compute the number of eigenvalues in the initial intervals.
*
MOUT = 0
CDIR\$ NOVECTOR
DO 30 JI = 1, MINP
DO 20 JP = 1, 2
TMP1 = D( 1 ) - AB( JI, JP )
IF( ABS( TMP1 ).LT.PIVMIN )
\$            TMP1 = -PIVMIN
NAB( JI, JP ) = 0
IF( TMP1.LE.ZERO )
\$            NAB( JI, JP ) = 1
*
DO 10 J = 2, N
TMP1 = D( J ) - E2( J-1 ) / TMP1 - AB( JI, JP )
IF( ABS( TMP1 ).LT.PIVMIN )
\$               TMP1 = -PIVMIN
IF( TMP1.LE.ZERO )
\$               NAB( JI, JP ) = NAB( JI, JP ) + 1
10          CONTINUE
20       CONTINUE
MOUT = MOUT + NAB( JI, 2 ) - NAB( JI, 1 )
30    CONTINUE
RETURN
END IF
*
*     Initialize for loop
*
*     KF and KL have the following meaning:
*        Intervals 1,...,KF-1 have converged.
*        Intervals KF,...,KL  still need to be refined.
*
KF = 1
KL = MINP
*
*     If IJOB=2, initialize C.
*     If IJOB=3, use the user-supplied starting point.
*
IF( IJOB.EQ.2 ) THEN
DO 40 JI = 1, MINP
C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
40    CONTINUE
END IF
*
*     Iteration loop
*
DO 130 JIT = 1, NITMAX
*
*        Loop over intervals
*
IF( KL-KF+1.GE.NBMIN .AND. NBMIN.GT.0 ) THEN
*
*           Begin of Parallel Version of the loop
*
DO 60 JI = KF, KL
*
*              Compute N(c), the number of eigenvalues less than c
*
WORK( JI ) = D( 1 ) - C( JI )
IWORK( JI ) = 0
IF( WORK( JI ).LE.PIVMIN ) THEN
IWORK( JI ) = 1
WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
END IF
*
DO 50 J = 2, N
WORK( JI ) = D( J ) - E2( J-1 ) / WORK( JI ) - C( JI )
IF( WORK( JI ).LE.PIVMIN ) THEN
IWORK( JI ) = IWORK( JI ) + 1
WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
END IF
50          CONTINUE
60       CONTINUE
*
IF( IJOB.LE.2 ) THEN
*
*              IJOB=2: Choose all intervals containing eigenvalues.
*
KLNEW = KL
DO 70 JI = KF, KL
*
*                 Insure that N(w) is monotone
*
IWORK( JI ) = MIN( NAB( JI, 2 ),
\$                          MAX( NAB( JI, 1 ), IWORK( JI ) ) )
*
*                 Update the Queue -- add intervals if both halves
*                 contain eigenvalues.
*
IF( IWORK( JI ).EQ.NAB( JI, 2 ) ) THEN
*
*                    No eigenvalue in the upper interval:
*                    just use the lower interval.
*
AB( JI, 2 ) = C( JI )
*
ELSE IF( IWORK( JI ).EQ.NAB( JI, 1 ) ) THEN
*
*                    No eigenvalue in the lower interval:
*                    just use the upper interval.
*
AB( JI, 1 ) = C( JI )
ELSE
KLNEW = KLNEW + 1
IF( KLNEW.LE.MMAX ) THEN
*
*                       Eigenvalue in both intervals -- add upper to
*                       queue.
*
AB( KLNEW, 2 ) = AB( JI, 2 )
NAB( KLNEW, 2 ) = NAB( JI, 2 )
AB( KLNEW, 1 ) = C( JI )
NAB( KLNEW, 1 ) = IWORK( JI )
AB( JI, 2 ) = C( JI )
NAB( JI, 2 ) = IWORK( JI )
ELSE
INFO = MMAX + 1
END IF
END IF
70          CONTINUE
IF( INFO.NE.0 )
\$            RETURN
KL = KLNEW
ELSE
*
*              IJOB=3: Binary search.  Keep only the interval containing
*                      w   s.t. N(w) = NVAL
*
DO 80 JI = KF, KL
IF( IWORK( JI ).LE.NVAL( JI ) ) THEN
AB( JI, 1 ) = C( JI )
NAB( JI, 1 ) = IWORK( JI )
END IF
IF( IWORK( JI ).GE.NVAL( JI ) ) THEN
AB( JI, 2 ) = C( JI )
NAB( JI, 2 ) = IWORK( JI )
END IF
80          CONTINUE
END IF
*
ELSE
*
*           End of Parallel Version of the loop
*
*           Begin of Serial Version of the loop
*
KLNEW = KL
DO 100 JI = KF, KL
*
*              Compute N(w), the number of eigenvalues less than w
*
TMP1 = C( JI )
TMP2 = D( 1 ) - TMP1
ITMP1 = 0
IF( TMP2.LE.PIVMIN ) THEN
ITMP1 = 1
TMP2 = MIN( TMP2, -PIVMIN )
END IF
*
*              A series of compiler directives to defeat vectorization
*              for the next loop
*
*\$PL\$ CMCHAR=' '
CDIR\$          NEXTSCALAR
C\$DIR          SCALAR
CDIR\$          NEXT SCALAR
CVD\$L          NOVECTOR
CDEC\$          NOVECTOR
CVD\$           NOVECTOR
*VDIR          NOVECTOR
*VOCL          LOOP,SCALAR
CIBM           PREFER SCALAR
*\$PL\$ CMCHAR='*'
*
DO 90 J = 2, N
TMP2 = D( J ) - E2( J-1 ) / TMP2 - TMP1
IF( TMP2.LE.PIVMIN ) THEN
ITMP1 = ITMP1 + 1
TMP2 = MIN( TMP2, -PIVMIN )
END IF
90          CONTINUE
*
IF( IJOB.LE.2 ) THEN
*
*                 IJOB=2: Choose all intervals containing eigenvalues.
*
*                 Insure that N(w) is monotone
*
ITMP1 = MIN( NAB( JI, 2 ),
\$                    MAX( NAB( JI, 1 ), ITMP1 ) )
*
*                 Update the Queue -- add intervals if both halves
*                 contain eigenvalues.
*
IF( ITMP1.EQ.NAB( JI, 2 ) ) THEN
*
*                    No eigenvalue in the upper interval:
*                    just use the lower interval.
*
AB( JI, 2 ) = TMP1
*
ELSE IF( ITMP1.EQ.NAB( JI, 1 ) ) THEN
*
*                    No eigenvalue in the lower interval:
*                    just use the upper interval.
*
AB( JI, 1 ) = TMP1
ELSE IF( KLNEW.LT.MMAX ) THEN
*
*                    Eigenvalue in both intervals -- add upper to queue.
*
KLNEW = KLNEW + 1
AB( KLNEW, 2 ) = AB( JI, 2 )
NAB( KLNEW, 2 ) = NAB( JI, 2 )
AB( KLNEW, 1 ) = TMP1
NAB( KLNEW, 1 ) = ITMP1
AB( JI, 2 ) = TMP1
NAB( JI, 2 ) = ITMP1
ELSE
INFO = MMAX + 1
RETURN
END IF
ELSE
*
*                 IJOB=3: Binary search.  Keep only the interval
*                         containing  w  s.t. N(w) = NVAL
*
IF( ITMP1.LE.NVAL( JI ) ) THEN
AB( JI, 1 ) = TMP1
NAB( JI, 1 ) = ITMP1
END IF
IF( ITMP1.GE.NVAL( JI ) ) THEN
AB( JI, 2 ) = TMP1
NAB( JI, 2 ) = ITMP1
END IF
END IF
100       CONTINUE
KL = KLNEW
*
*           End of Serial Version of the loop
*
END IF
*
*        Check for convergence
*
KFNEW = KF
DO 110 JI = KF, KL
TMP1 = ABS( AB( JI, 2 )-AB( JI, 1 ) )
TMP2 = MAX( ABS( AB( JI, 2 ) ), ABS( AB( JI, 1 ) ) )
IF( TMP1.LT.MAX( ABSTOL, PIVMIN, RELTOL*TMP2 ) .OR.
\$          NAB( JI, 1 ).GE.NAB( JI, 2 ) ) THEN
*
*              Converged -- Swap with position KFNEW,
*                           then increment KFNEW
*
IF( JI.GT.KFNEW ) THEN
TMP1 = AB( JI, 1 )
TMP2 = AB( JI, 2 )
ITMP1 = NAB( JI, 1 )
ITMP2 = NAB( JI, 2 )
AB( JI, 1 ) = AB( KFNEW, 1 )
AB( JI, 2 ) = AB( KFNEW, 2 )
NAB( JI, 1 ) = NAB( KFNEW, 1 )
NAB( JI, 2 ) = NAB( KFNEW, 2 )
AB( KFNEW, 1 ) = TMP1
AB( KFNEW, 2 ) = TMP2
NAB( KFNEW, 1 ) = ITMP1
NAB( KFNEW, 2 ) = ITMP2
IF( IJOB.EQ.3 ) THEN
ITMP1 = NVAL( JI )
NVAL( JI ) = NVAL( KFNEW )
NVAL( KFNEW ) = ITMP1
END IF
END IF
KFNEW = KFNEW + 1
END IF
110    CONTINUE
KF = KFNEW
*
*        Choose Midpoints
*
DO 120 JI = KF, KL
C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
120    CONTINUE
*
*        If no more intervals to refine, quit.
*
IF( KF.GT.KL )
\$      GO TO 140
130 CONTINUE
*
*     Converged
*
140 CONTINUE
INFO = MAX( KL+1-KF, 0 )
MOUT = KL
*
RETURN
*
*     End of SLAEBZ
*
END

```