```      SUBROUTINE SLAE2( A, B, C, RT1, RT2 )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
REAL               A, B, C, RT1, RT2
*     ..
*
*  Purpose
*  =======
*
*  SLAE2  computes the eigenvalues of a 2-by-2 symmetric matrix
*     [  A   B  ]
*     [  B   C  ].
*  On return, RT1 is the eigenvalue of larger absolute value, and RT2
*  is the eigenvalue of smaller absolute value.
*
*  Arguments
*  =========
*
*  A       (input) REAL
*          The (1,1) element of the 2-by-2 matrix.
*
*  B       (input) REAL
*          The (1,2) and (2,1) elements of the 2-by-2 matrix.
*
*  C       (input) REAL
*          The (2,2) element of the 2-by-2 matrix.
*
*  RT1     (output) REAL
*          The eigenvalue of larger absolute value.
*
*  RT2     (output) REAL
*          The eigenvalue of smaller absolute value.
*
*  Further Details
*  ===============
*
*  RT1 is accurate to a few ulps barring over/underflow.
*
*  RT2 may be inaccurate if there is massive cancellation in the
*  determinant A*C-B*B; higher precision or correctly rounded or
*  correctly truncated arithmetic would be needed to compute RT2
*  accurately in all cases.
*
*  Overflow is possible only if RT1 is within a factor of 5 of overflow.
*  Underflow is harmless if the input data is 0 or exceeds
*     underflow_threshold / macheps.
*
* =====================================================================
*
*     .. Parameters ..
REAL               ONE
PARAMETER          ( ONE = 1.0E0 )
REAL               TWO
PARAMETER          ( TWO = 2.0E0 )
REAL               ZERO
PARAMETER          ( ZERO = 0.0E0 )
REAL               HALF
PARAMETER          ( HALF = 0.5E0 )
*     ..
*     .. Local Scalars ..
REAL               AB, ACMN, ACMX, ADF, DF, RT, SM, TB
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
*     Compute the eigenvalues
*
SM = A + C
DF = A - C
ADF = ABS( DF )
TB = B + B
AB = ABS( TB )
IF( ABS( A ).GT.ABS( C ) ) THEN
ACMX = A
ACMN = C
ELSE
ACMX = C
ACMN = A
END IF
IF( ADF.GT.AB ) THEN
RT = ADF*SQRT( ONE+( AB / ADF )**2 )
ELSE IF( ADF.LT.AB ) THEN
RT = AB*SQRT( ONE+( ADF / AB )**2 )
ELSE
*
*        Includes case AB=ADF=0
*
RT = AB*SQRT( TWO )
END IF
IF( SM.LT.ZERO ) THEN
RT1 = HALF*( SM-RT )
*
*        Order of execution important.
*        To get fully accurate smaller eigenvalue,
*        next line needs to be executed in higher precision.
*
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
ELSE IF( SM.GT.ZERO ) THEN
RT1 = HALF*( SM+RT )
*
*        Order of execution important.
*        To get fully accurate smaller eigenvalue,
*        next line needs to be executed in higher precision.
*
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
ELSE
*
*        Includes case RT1 = RT2 = 0
*
RT1 = HALF*RT
RT2 = -HALF*RT
END IF
RETURN
*
*     End of SLAE2
*
END

```