```      SUBROUTINE SGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
\$                  BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
*
*  -- LAPACK driver routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
CHARACTER          JOBVL, JOBVR
INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
*     ..
*     .. Array Arguments ..
REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
\$                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
\$                   VR( LDVR, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  This routine is deprecated and has been replaced by routine SGGEV.
*
*  SGEGV computes the eigenvalues and, optionally, the left and/or right
*  eigenvectors of a real matrix pair (A,B).
*  Given two square matrices A and B,
*  the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
*  eigenvalues lambda and corresponding (non-zero) eigenvectors x such
*  that
*
*     A*x = lambda*B*x.
*
*  An alternate form is to find the eigenvalues mu and corresponding
*  eigenvectors y such that
*
*     mu*A*y = B*y.
*
*  These two forms are equivalent with mu = 1/lambda and x = y if
*  neither lambda nor mu is zero.  In order to deal with the case that
*  lambda or mu is zero or small, two values alpha and beta are returned
*  for each eigenvalue, such that lambda = alpha/beta and
*  mu = beta/alpha.
*
*  The vectors x and y in the above equations are right eigenvectors of
*  the matrix pair (A,B).  Vectors u and v satisfying
*
*     u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B
*
*  are left eigenvectors of (A,B).
*
*  Note: this routine performs "full balancing" on A and B -- see
*  "Further Details", below.
*
*  Arguments
*  =========
*
*  JOBVL   (input) CHARACTER*1
*          = 'N':  do not compute the left generalized eigenvectors;
*          = 'V':  compute the left generalized eigenvectors (returned
*                  in VL).
*
*  JOBVR   (input) CHARACTER*1
*          = 'N':  do not compute the right generalized eigenvectors;
*          = 'V':  compute the right generalized eigenvectors (returned
*                  in VR).
*
*  N       (input) INTEGER
*          The order of the matrices A, B, VL, and VR.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA, N)
*          On entry, the matrix A.
*          If JOBVL = 'V' or JOBVR = 'V', then on exit A
*          contains the real Schur form of A from the generalized Schur
*          factorization of the pair (A,B) after balancing.
*          If no eigenvectors were computed, then only the diagonal
*          blocks from the Schur form will be correct.  See SGGHRD and
*          SHGEQZ for details.
*
*  LDA     (input) INTEGER
*          The leading dimension of A.  LDA >= max(1,N).
*
*  B       (input/output) REAL array, dimension (LDB, N)
*          On entry, the matrix B.
*          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
*          upper triangular matrix obtained from B in the generalized
*          Schur factorization of the pair (A,B) after balancing.
*          If no eigenvectors were computed, then only those elements of
*          B corresponding to the diagonal blocks from the Schur form of
*          A will be correct.  See SGGHRD and SHGEQZ for details.
*
*  LDB     (input) INTEGER
*          The leading dimension of B.  LDB >= max(1,N).
*
*  ALPHAR  (output) REAL array, dimension (N)
*          The real parts of each scalar alpha defining an eigenvalue of
*          GNEP.
*
*  ALPHAI  (output) REAL array, dimension (N)
*          The imaginary parts of each scalar alpha defining an
*          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
*          eigenvalue is real; if positive, then the j-th and
*          (j+1)-st eigenvalues are a complex conjugate pair, with
*          ALPHAI(j+1) = -ALPHAI(j).
*
*  BETA    (output) REAL array, dimension (N)
*          The scalars beta that define the eigenvalues of GNEP.
*
*          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
*          beta = BETA(j) represent the j-th eigenvalue of the matrix
*          pair (A,B), in one of the forms lambda = alpha/beta or
*          mu = beta/alpha.  Since either lambda or mu may overflow,
*          they should not, in general, be computed.
*
*  VL      (output) REAL array, dimension (LDVL,N)
*          If JOBVL = 'V', the left eigenvectors u(j) are stored
*          in the columns of VL, in the same order as their eigenvalues.
*          If the j-th eigenvalue is real, then u(j) = VL(:,j).
*          If the j-th and (j+1)-st eigenvalues form a complex conjugate
*          pair, then
*             u(j) = VL(:,j) + i*VL(:,j+1)
*          and
*            u(j+1) = VL(:,j) - i*VL(:,j+1).
*
*          Each eigenvector is scaled so that its largest component has
*          abs(real part) + abs(imag. part) = 1, except for eigenvectors
*          corresponding to an eigenvalue with alpha = beta = 0, which
*          are set to zero.
*          Not referenced if JOBVL = 'N'.
*
*  LDVL    (input) INTEGER
*          The leading dimension of the matrix VL. LDVL >= 1, and
*          if JOBVL = 'V', LDVL >= N.
*
*  VR      (output) REAL array, dimension (LDVR,N)
*          If JOBVR = 'V', the right eigenvectors x(j) are stored
*          in the columns of VR, in the same order as their eigenvalues.
*          If the j-th eigenvalue is real, then x(j) = VR(:,j).
*          If the j-th and (j+1)-st eigenvalues form a complex conjugate
*          pair, then
*            x(j) = VR(:,j) + i*VR(:,j+1)
*          and
*            x(j+1) = VR(:,j) - i*VR(:,j+1).
*
*          Each eigenvector is scaled so that its largest component has
*          abs(real part) + abs(imag. part) = 1, except for eigenvalues
*          corresponding to an eigenvalue with alpha = beta = 0, which
*          are set to zero.
*          Not referenced if JOBVR = 'N'.
*
*  LDVR    (input) INTEGER
*          The leading dimension of the matrix VR. LDVR >= 1, and
*          if JOBVR = 'V', LDVR >= N.
*
*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.  LWORK >= max(1,8*N).
*          For good performance, LWORK must generally be larger.
*          To compute the optimal value of LWORK, call ILAENV to get
*          blocksizes (for SGEQRF, SORMQR, and SORGQR.)  Then compute:
*          NB  -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR;
*          The optimal LWORK is:
*              2*N + MAX( 6*N, N*(NB+1) ).
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          = 1,...,N:
*                The QZ iteration failed.  No eigenvectors have been
*                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
*                should be correct for j=INFO+1,...,N.
*          > N:  errors that usually indicate LAPACK problems:
*                =N+1: error return from SGGBAL
*                =N+2: error return from SGEQRF
*                =N+3: error return from SORMQR
*                =N+4: error return from SORGQR
*                =N+5: error return from SGGHRD
*                =N+6: error return from SHGEQZ (other than failed
*                                                iteration)
*                =N+7: error return from STGEVC
*                =N+8: error return from SGGBAK (computing VL)
*                =N+9: error return from SGGBAK (computing VR)
*                =N+10: error return from SLASCL (various calls)
*
*  Further Details
*  ===============
*
*  Balancing
*  ---------
*
*  This driver calls SGGBAL to both permute and scale rows and columns
*  of A and B.  The permutations PL and PR are chosen so that PL*A*PR
*  and PL*B*R will be upper triangular except for the diagonal blocks
*  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
*  possible.  The diagonal scaling matrices DL and DR are chosen so
*  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
*  one (except for the elements that start out zero.)
*
*  After the eigenvalues and eigenvectors of the balanced matrices
*  have been computed, SGGBAK transforms the eigenvectors back to what
*  they would have been (in perfect arithmetic) if they had not been
*  balanced.
*
*  Contents of A and B on Exit
*  -------- -- - --- - -- ----
*
*  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
*  both), then on exit the arrays A and B will contain the real Schur
*  form[*] of the "balanced" versions of A and B.  If no eigenvectors
*  are computed, then only the diagonal blocks will be correct.
*
*  [*] See SHGEQZ, SGEGS, or read the book "Matrix Computations",
*      by Golub & van Loan, pub. by Johns Hopkins U. Press.
*
*  =====================================================================
*
*     .. Parameters ..
REAL               ZERO, ONE
PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
LOGICAL            ILIMIT, ILV, ILVL, ILVR, LQUERY
CHARACTER          CHTEMP
INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
\$                   IN, IRIGHT, IROWS, ITAU, IWORK, JC, JR, LOPT,
\$                   LWKMIN, LWKOPT, NB, NB1, NB2, NB3
REAL               ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
\$                   BNRM1, BNRM2, EPS, ONEPLS, SAFMAX, SAFMIN,
\$                   SALFAI, SALFAR, SBETA, SCALE, TEMP
*     ..
*     .. Local Arrays ..
LOGICAL            LDUMMA( 1 )
*     ..
*     .. External Subroutines ..
EXTERNAL           SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, SLACPY,
\$                   SLASCL, SLASET, SORGQR, SORMQR, STGEVC, XERBLA
*     ..
*     .. External Functions ..
LOGICAL            LSAME
INTEGER            ILAENV
REAL               SLAMCH, SLANGE
EXTERNAL           ILAENV, LSAME, SLAMCH, SLANGE
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          ABS, INT, MAX
*     ..
*     .. Executable Statements ..
*
*     Decode the input arguments
*
IF( LSAME( JOBVL, 'N' ) ) THEN
IJOBVL = 1
ILVL = .FALSE.
ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
IJOBVL = 2
ILVL = .TRUE.
ELSE
IJOBVL = -1
ILVL = .FALSE.
END IF
*
IF( LSAME( JOBVR, 'N' ) ) THEN
IJOBVR = 1
ILVR = .FALSE.
ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
IJOBVR = 2
ILVR = .TRUE.
ELSE
IJOBVR = -1
ILVR = .FALSE.
END IF
ILV = ILVL .OR. ILVR
*
*     Test the input arguments
*
LWKMIN = MAX( 8*N, 1 )
LWKOPT = LWKMIN
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
INFO = 0
IF( IJOBVL.LE.0 ) THEN
INFO = -1
ELSE IF( IJOBVR.LE.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
INFO = -12
ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
INFO = -14
ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -16
END IF
*
IF( INFO.EQ.0 ) THEN
NB1 = ILAENV( 1, 'SGEQRF', ' ', N, N, -1, -1 )
NB2 = ILAENV( 1, 'SORMQR', ' ', N, N, N, -1 )
NB3 = ILAENV( 1, 'SORGQR', ' ', N, N, N, -1 )
NB = MAX( NB1, NB2, NB3 )
LOPT = 2*N + MAX( 6*N, N*(NB+1) )
WORK( 1 ) = LOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGEGV ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
*     Quick return if possible
*
IF( N.EQ.0 )
\$   RETURN
*
*     Get machine constants
*
EPS = SLAMCH( 'E' )*SLAMCH( 'B' )
SAFMIN = SLAMCH( 'S' )
SAFMIN = SAFMIN + SAFMIN
SAFMAX = ONE / SAFMIN
ONEPLS = ONE + ( 4*EPS )
*
*     Scale A
*
ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
ANRM1 = ANRM
ANRM2 = ONE
IF( ANRM.LT.ONE ) THEN
IF( SAFMAX*ANRM.LT.ONE ) THEN
ANRM1 = SAFMIN
ANRM2 = SAFMAX*ANRM
END IF
END IF
*
IF( ANRM.GT.ZERO ) THEN
CALL SLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 10
RETURN
END IF
END IF
*
*     Scale B
*
BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
BNRM1 = BNRM
BNRM2 = ONE
IF( BNRM.LT.ONE ) THEN
IF( SAFMAX*BNRM.LT.ONE ) THEN
BNRM1 = SAFMIN
BNRM2 = SAFMAX*BNRM
END IF
END IF
*
IF( BNRM.GT.ZERO ) THEN
CALL SLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 10
RETURN
END IF
END IF
*
*     Permute the matrix to make it more nearly triangular
*     Workspace layout:  (8*N words -- "work" requires 6*N words)
*        left_permutation, right_permutation, work...
*
ILEFT = 1
IRIGHT = N + 1
IWORK = IRIGHT + N
CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
\$             WORK( IRIGHT ), WORK( IWORK ), IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 1
GO TO 120
END IF
*
*     Reduce B to triangular form, and initialize VL and/or VR
*     Workspace layout:  ("work..." must have at least N words)
*        left_permutation, right_permutation, tau, work...
*
IROWS = IHI + 1 - ILO
IF( ILV ) THEN
ICOLS = N + 1 - ILO
ELSE
ICOLS = IROWS
END IF
ITAU = IWORK
IWORK = ITAU + IROWS
CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
\$             WORK( IWORK ), LWORK+1-IWORK, IINFO )
IF( IINFO.GE.0 )
\$   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
INFO = N + 2
GO TO 120
END IF
*
CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
\$             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
\$             LWORK+1-IWORK, IINFO )
IF( IINFO.GE.0 )
\$   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
INFO = N + 3
GO TO 120
END IF
*
IF( ILVL ) THEN
CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
\$                VL( ILO+1, ILO ), LDVL )
CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
\$                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
\$                IINFO )
IF( IINFO.GE.0 )
\$      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
INFO = N + 4
GO TO 120
END IF
END IF
*
IF( ILVR )
\$   CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
*
*     Reduce to generalized Hessenberg form
*
IF( ILV ) THEN
*
*        Eigenvectors requested -- work on whole matrix.
*
CALL SGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
\$                LDVL, VR, LDVR, IINFO )
ELSE
CALL SGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
\$                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
END IF
IF( IINFO.NE.0 ) THEN
INFO = N + 5
GO TO 120
END IF
*
*     Perform QZ algorithm
*     Workspace layout:  ("work..." must have at least 1 word)
*        left_permutation, right_permutation, work...
*
IWORK = ITAU
IF( ILV ) THEN
CHTEMP = 'S'
ELSE
CHTEMP = 'E'
END IF
CALL SHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
\$             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
\$             WORK( IWORK ), LWORK+1-IWORK, IINFO )
IF( IINFO.GE.0 )
\$   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
IF( IINFO.NE.0 ) THEN
IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
INFO = IINFO
ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
INFO = IINFO - N
ELSE
INFO = N + 6
END IF
GO TO 120
END IF
*
IF( ILV ) THEN
*
*        Compute Eigenvectors  (STGEVC requires 6*N words of workspace)
*
IF( ILVL ) THEN
IF( ILVR ) THEN
CHTEMP = 'B'
ELSE
CHTEMP = 'L'
END IF
ELSE
CHTEMP = 'R'
END IF
*
CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
\$                VR, LDVR, N, IN, WORK( IWORK ), IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 7
GO TO 120
END IF
*
*        Undo balancing on VL and VR, rescale
*
IF( ILVL ) THEN
CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
\$                   WORK( IRIGHT ), N, VL, LDVL, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 8
GO TO 120
END IF
DO 50 JC = 1, N
IF( ALPHAI( JC ).LT.ZERO )
\$            GO TO 50
TEMP = ZERO
IF( ALPHAI( JC ).EQ.ZERO ) THEN
DO 10 JR = 1, N
TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
10             CONTINUE
ELSE
DO 20 JR = 1, N
TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
\$                      ABS( VL( JR, JC+1 ) ) )
20             CONTINUE
END IF
IF( TEMP.LT.SAFMIN )
\$            GO TO 50
TEMP = ONE / TEMP
IF( ALPHAI( JC ).EQ.ZERO ) THEN
DO 30 JR = 1, N
VL( JR, JC ) = VL( JR, JC )*TEMP
30             CONTINUE
ELSE
DO 40 JR = 1, N
VL( JR, JC ) = VL( JR, JC )*TEMP
VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
40             CONTINUE
END IF
50       CONTINUE
END IF
IF( ILVR ) THEN
CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
\$                   WORK( IRIGHT ), N, VR, LDVR, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = N + 9
GO TO 120
END IF
DO 100 JC = 1, N
IF( ALPHAI( JC ).LT.ZERO )
\$            GO TO 100
TEMP = ZERO
IF( ALPHAI( JC ).EQ.ZERO ) THEN
DO 60 JR = 1, N
TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
60             CONTINUE
ELSE
DO 70 JR = 1, N
TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
\$                      ABS( VR( JR, JC+1 ) ) )
70             CONTINUE
END IF
IF( TEMP.LT.SAFMIN )
\$            GO TO 100
TEMP = ONE / TEMP
IF( ALPHAI( JC ).EQ.ZERO ) THEN
DO 80 JR = 1, N
VR( JR, JC ) = VR( JR, JC )*TEMP
80             CONTINUE
ELSE
DO 90 JR = 1, N
VR( JR, JC ) = VR( JR, JC )*TEMP
VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
90             CONTINUE
END IF
100       CONTINUE
END IF
*
*        End of eigenvector calculation
*
END IF
*
*     Undo scaling in alpha, beta
*
*     Note: this does not give the alpha and beta for the unscaled
*     problem.
*
*     Un-scaling is limited to avoid underflow in alpha and beta
*     if they are significant.
*
DO 110 JC = 1, N
ABSAR = ABS( ALPHAR( JC ) )
ABSAI = ABS( ALPHAI( JC ) )
ABSB = ABS( BETA( JC ) )
SALFAR = ANRM*ALPHAR( JC )
SALFAI = ANRM*ALPHAI( JC )
SBETA = BNRM*BETA( JC )
ILIMIT = .FALSE.
SCALE = ONE
*
*        Check for significant underflow in ALPHAI
*
IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
\$       MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
ILIMIT = .TRUE.
SCALE = ( ONEPLS*SAFMIN / ANRM1 ) /
\$              MAX( ONEPLS*SAFMIN, ANRM2*ABSAI )
*
ELSE IF( SALFAI.EQ.ZERO ) THEN
*
*           If insignificant underflow in ALPHAI, then make the
*           conjugate eigenvalue real.
*
IF( ALPHAI( JC ).LT.ZERO .AND. JC.GT.1 ) THEN
ALPHAI( JC-1 ) = ZERO
ELSE IF( ALPHAI( JC ).GT.ZERO .AND. JC.LT.N ) THEN
ALPHAI( JC+1 ) = ZERO
END IF
END IF
*
*        Check for significant underflow in ALPHAR
*
IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
\$       MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
ILIMIT = .TRUE.
SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / ANRM1 ) /
\$              MAX( ONEPLS*SAFMIN, ANRM2*ABSAR ) )
END IF
*
*        Check for significant underflow in BETA
*
IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
\$       MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
ILIMIT = .TRUE.
SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / BNRM1 ) /
\$              MAX( ONEPLS*SAFMIN, BNRM2*ABSB ) )
END IF
*
*        Check for possible overflow when limiting scaling
*
IF( ILIMIT ) THEN
TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
\$             ABS( SBETA ) )
IF( TEMP.GT.ONE )
\$         SCALE = SCALE / TEMP
IF( SCALE.LT.ONE )
\$         ILIMIT = .FALSE.
END IF
*
*        Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary.
*
IF( ILIMIT ) THEN
SALFAR = ( SCALE*ALPHAR( JC ) )*ANRM
SALFAI = ( SCALE*ALPHAI( JC ) )*ANRM
SBETA = ( SCALE*BETA( JC ) )*BNRM
END IF
ALPHAR( JC ) = SALFAR
ALPHAI( JC ) = SALFAI
BETA( JC ) = SBETA
110 CONTINUE
*
120 CONTINUE
WORK( 1 ) = LWKOPT
*
RETURN
*
*     End of SGEGV
*
END

```