```      SUBROUTINE SGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
REAL               A( LDA, * ), D( * ), E( * ), TAUP( * ),
\$                   TAUQ( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SGEBD2 reduces a real general m by n matrix A to upper or lower
*  bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
*
*  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows in the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns in the matrix A.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the m by n general matrix to be reduced.
*          On exit,
*          if m >= n, the diagonal and the first superdiagonal are
*            overwritten with the upper bidiagonal matrix B; the
*            elements below the diagonal, with the array TAUQ, represent
*            the orthogonal matrix Q as a product of elementary
*            reflectors, and the elements above the first superdiagonal,
*            with the array TAUP, represent the orthogonal matrix P as
*            a product of elementary reflectors;
*          if m < n, the diagonal and the first subdiagonal are
*            overwritten with the lower bidiagonal matrix B; the
*            elements below the first subdiagonal, with the array TAUQ,
*            represent the orthogonal matrix Q as a product of
*            elementary reflectors, and the elements above the diagonal,
*            with the array TAUP, represent the orthogonal matrix P as
*            a product of elementary reflectors.
*          See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  D       (output) REAL array, dimension (min(M,N))
*          The diagonal elements of the bidiagonal matrix B:
*          D(i) = A(i,i).
*
*  E       (output) REAL array, dimension (min(M,N)-1)
*          The off-diagonal elements of the bidiagonal matrix B:
*          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
*          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
*
*  TAUQ    (output) REAL array dimension (min(M,N))
*          The scalar factors of the elementary reflectors which
*          represent the orthogonal matrix Q. See Further Details.
*
*  TAUP    (output) REAL array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors which
*          represent the orthogonal matrix P. See Further Details.
*
*  WORK    (workspace) REAL array, dimension (max(M,N))
*
*  INFO    (output) INTEGER
*          = 0: successful exit.
*          < 0: if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The matrices Q and P are represented as products of elementary
*  reflectors:
*
*  If m >= n,
*
*     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
*
*  Each H(i) and G(i) has the form:
*
*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
*
*  where tauq and taup are real scalars, and v and u are real vectors;
*  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
*  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
*  tauq is stored in TAUQ(i) and taup in TAUP(i).
*
*  If m < n,
*
*     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
*
*  Each H(i) and G(i) has the form:
*
*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
*
*  where tauq and taup are real scalars, and v and u are real vectors;
*  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
*  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
*  tauq is stored in TAUQ(i) and taup in TAUP(i).
*
*  The contents of A on exit are illustrated by the following examples:
*
*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
*
*    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
*    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
*    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
*    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
*    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
*    (  v1  v2  v3  v4  v5 )
*
*  where d and e denote diagonal and off-diagonal elements of B, vi
*  denotes an element of the vector defining H(i), and ui an element of
*  the vector defining G(i).
*
*  =====================================================================
*
*     .. Parameters ..
REAL               ZERO, ONE
PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
INTEGER            I
*     ..
*     .. External Subroutines ..
EXTERNAL           SLARF, SLARFG, XERBLA
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
IF( INFO.LT.0 ) THEN
CALL XERBLA( 'SGEBD2', -INFO )
RETURN
END IF
*
IF( M.GE.N ) THEN
*
*        Reduce to upper bidiagonal form
*
DO 10 I = 1, N
*
*           Generate elementary reflector H(i) to annihilate A(i+1:m,i)
*
CALL SLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
\$                   TAUQ( I ) )
D( I ) = A( I, I )
A( I, I ) = ONE
*
*           Apply H(i) to A(i:m,i+1:n) from the left
*
IF( I.LT.N )
\$         CALL SLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAUQ( I ),
\$                     A( I, I+1 ), LDA, WORK )
A( I, I ) = D( I )
*
IF( I.LT.N ) THEN
*
*              Generate elementary reflector G(i) to annihilate
*              A(i,i+2:n)
*
CALL SLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ),
\$                      LDA, TAUP( I ) )
E( I ) = A( I, I+1 )
A( I, I+1 ) = ONE
*
*              Apply G(i) to A(i+1:m,i+1:n) from the right
*
CALL SLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
\$                     TAUP( I ), A( I+1, I+1 ), LDA, WORK )
A( I, I+1 ) = E( I )
ELSE
TAUP( I ) = ZERO
END IF
10    CONTINUE
ELSE
*
*        Reduce to lower bidiagonal form
*
DO 20 I = 1, M
*
*           Generate elementary reflector G(i) to annihilate A(i,i+1:n)
*
CALL SLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
\$                   TAUP( I ) )
D( I ) = A( I, I )
A( I, I ) = ONE
*
*           Apply G(i) to A(i+1:m,i:n) from the right
*
IF( I.LT.M )
\$         CALL SLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
\$                     TAUP( I ), A( I+1, I ), LDA, WORK )
A( I, I ) = D( I )
*
IF( I.LT.M ) THEN
*
*              Generate elementary reflector H(i) to annihilate
*              A(i+2:m,i)
*
CALL SLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1,
\$                      TAUQ( I ) )
E( I ) = A( I+1, I )
A( I+1, I ) = ONE
*
*              Apply H(i) to A(i+1:m,i+1:n) from the left
*
CALL SLARF( 'Left', M-I, N-I, A( I+1, I ), 1, TAUQ( I ),
\$                     A( I+1, I+1 ), LDA, WORK )
A( I+1, I ) = E( I )
ELSE
TAUQ( I ) = ZERO
END IF
20    CONTINUE
END IF
RETURN
*
*     End of SGEBD2
*
END

```