```      SUBROUTINE DPTCON( N, D, E, ANORM, RCOND, WORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
INTEGER            INFO, N
DOUBLE PRECISION   ANORM, RCOND
*     ..
*     .. Array Arguments ..
DOUBLE PRECISION   D( * ), E( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DPTCON computes the reciprocal of the condition number (in the
*  1-norm) of a real symmetric positive definite tridiagonal matrix
*  using the factorization A = L*D*L**T or A = U**T*D*U computed by
*  DPTTRF.
*
*  Norm(inv(A)) is computed by a direct method, and the reciprocal of
*  the condition number is computed as
*               RCOND = 1 / (ANORM * norm(inv(A))).
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  D       (input) DOUBLE PRECISION array, dimension (N)
*          The n diagonal elements of the diagonal matrix D from the
*          factorization of A, as computed by DPTTRF.
*
*  E       (input) DOUBLE PRECISION array, dimension (N-1)
*          The (n-1) off-diagonal elements of the unit bidiagonal factor
*          U or L from the factorization of A,  as computed by DPTTRF.
*
*  ANORM   (input) DOUBLE PRECISION
*          The 1-norm of the original matrix A.
*
*  RCOND   (output) DOUBLE PRECISION
*          The reciprocal of the condition number of the matrix A,
*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
*          1-norm of inv(A) computed in this routine.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  The method used is described in Nicholas J. Higham, "Efficient
*  Algorithms for Computing the Condition Number of a Tridiagonal
*  Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
*
*  =====================================================================
*
*     .. Parameters ..
DOUBLE PRECISION   ONE, ZERO
PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
INTEGER            I, IX
DOUBLE PRECISION   AINVNM
*     ..
*     .. External Functions ..
INTEGER            IDAMAX
EXTERNAL           IDAMAX
*     ..
*     .. External Subroutines ..
EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          ABS
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments.
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( ANORM.LT.ZERO ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DPTCON', -INFO )
RETURN
END IF
*
*     Quick return if possible
*
RCOND = ZERO
IF( N.EQ.0 ) THEN
RCOND = ONE
RETURN
ELSE IF( ANORM.EQ.ZERO ) THEN
RETURN
END IF
*
*     Check that D(1:N) is positive.
*
DO 10 I = 1, N
IF( D( I ).LE.ZERO )
\$      RETURN
10 CONTINUE
*
*     Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
*
*        m(i,j) =  abs(A(i,j)), i = j,
*        m(i,j) = -abs(A(i,j)), i .ne. j,
*
*     and e = [ 1, 1, ..., 1 ]'.  Note M(A) = M(L)*D*M(L)'.
*
*     Solve M(L) * x = e.
*
WORK( 1 ) = ONE
DO 20 I = 2, N
WORK( I ) = ONE + WORK( I-1 )*ABS( E( I-1 ) )
20 CONTINUE
*
*     Solve D * M(L)' * x = b.
*
WORK( N ) = WORK( N ) / D( N )
DO 30 I = N - 1, 1, -1
WORK( I ) = WORK( I ) / D( I ) + WORK( I+1 )*ABS( E( I ) )
30 CONTINUE
*
*     Compute AINVNM = max(x(i)), 1<=i<=n.
*
IX = IDAMAX( N, WORK, 1 )
AINVNM = ABS( WORK( IX ) )
*
*     Compute the reciprocal condition number.
*
IF( AINVNM.NE.ZERO )
\$   RCOND = ( ONE / AINVNM ) / ANORM
*
RETURN
*
*     End of DPTCON
*
END

```