```      SUBROUTINE DLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
INTEGER            J, JOB
DOUBLE PRECISION   C, GAMMA, S, SEST, SESTPR
*     ..
*     .. Array Arguments ..
DOUBLE PRECISION   W( J ), X( J )
*     ..
*
*  Purpose
*  =======
*
*  DLAIC1 applies one step of incremental condition estimation in
*  its simplest version:
*
*  Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
*  lower triangular matrix L, such that
*           twonorm(L*x) = sest
*  Then DLAIC1 computes sestpr, s, c such that
*  the vector
*                  [ s*x ]
*           xhat = [  c  ]
*  is an approximate singular vector of
*                  [ L     0  ]
*           Lhat = [ w' gamma ]
*  in the sense that
*           twonorm(Lhat*xhat) = sestpr.
*
*  Depending on JOB, an estimate for the largest or smallest singular
*  value is computed.
*
*  Note that [s c]' and sestpr**2 is an eigenpair of the system
*
*      diag(sest*sest, 0) + [alpha  gamma] * [ alpha ]
*                                            [ gamma ]
*
*  where  alpha =  x'*w.
*
*  Arguments
*  =========
*
*  JOB     (input) INTEGER
*          = 1: an estimate for the largest singular value is computed.
*          = 2: an estimate for the smallest singular value is computed.
*
*  J       (input) INTEGER
*          Length of X and W
*
*  X       (input) DOUBLE PRECISION array, dimension (J)
*          The j-vector x.
*
*  SEST    (input) DOUBLE PRECISION
*          Estimated singular value of j by j matrix L
*
*  W       (input) DOUBLE PRECISION array, dimension (J)
*          The j-vector w.
*
*  GAMMA   (input) DOUBLE PRECISION
*          The diagonal element gamma.
*
*  SESTPR  (output) DOUBLE PRECISION
*          Estimated singular value of (j+1) by (j+1) matrix Lhat.
*
*  S       (output) DOUBLE PRECISION
*          Sine needed in forming xhat.
*
*  C       (output) DOUBLE PRECISION
*          Cosine needed in forming xhat.
*
*  =====================================================================
*
*     .. Parameters ..
DOUBLE PRECISION   ZERO, ONE, TWO
PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
DOUBLE PRECISION   HALF, FOUR
PARAMETER          ( HALF = 0.5D0, FOUR = 4.0D0 )
*     ..
*     .. Local Scalars ..
DOUBLE PRECISION   ABSALP, ABSEST, ABSGAM, ALPHA, B, COSINE, EPS,
\$                   NORMA, S1, S2, SINE, T, TEST, TMP, ZETA1, ZETA2
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          ABS, MAX, SIGN, SQRT
*     ..
*     .. External Functions ..
DOUBLE PRECISION   DDOT, DLAMCH
EXTERNAL           DDOT, DLAMCH
*     ..
*     .. Executable Statements ..
*
EPS = DLAMCH( 'Epsilon' )
ALPHA = DDOT( J, X, 1, W, 1 )
*
ABSALP = ABS( ALPHA )
ABSGAM = ABS( GAMMA )
ABSEST = ABS( SEST )
*
IF( JOB.EQ.1 ) THEN
*
*        Estimating largest singular value
*
*        special cases
*
IF( SEST.EQ.ZERO ) THEN
S1 = MAX( ABSGAM, ABSALP )
IF( S1.EQ.ZERO ) THEN
S = ZERO
C = ONE
SESTPR = ZERO
ELSE
S = ALPHA / S1
C = GAMMA / S1
TMP = SQRT( S*S+C*C )
S = S / TMP
C = C / TMP
SESTPR = S1*TMP
END IF
RETURN
ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
S = ONE
C = ZERO
TMP = MAX( ABSEST, ABSALP )
S1 = ABSEST / TMP
S2 = ABSALP / TMP
SESTPR = TMP*SQRT( S1*S1+S2*S2 )
RETURN
ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
S1 = ABSGAM
S2 = ABSEST
IF( S1.LE.S2 ) THEN
S = ONE
C = ZERO
SESTPR = S2
ELSE
S = ZERO
C = ONE
SESTPR = S1
END IF
RETURN
ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
S1 = ABSGAM
S2 = ABSALP
IF( S1.LE.S2 ) THEN
TMP = S1 / S2
S = SQRT( ONE+TMP*TMP )
SESTPR = S2*S
C = ( GAMMA / S2 ) / S
S = SIGN( ONE, ALPHA ) / S
ELSE
TMP = S2 / S1
C = SQRT( ONE+TMP*TMP )
SESTPR = S1*C
S = ( ALPHA / S1 ) / C
C = SIGN( ONE, GAMMA ) / C
END IF
RETURN
ELSE
*
*           normal case
*
ZETA1 = ALPHA / ABSEST
ZETA2 = GAMMA / ABSEST
*
B = ( ONE-ZETA1*ZETA1-ZETA2*ZETA2 )*HALF
C = ZETA1*ZETA1
IF( B.GT.ZERO ) THEN
T = C / ( B+SQRT( B*B+C ) )
ELSE
T = SQRT( B*B+C ) - B
END IF
*
SINE = -ZETA1 / T
COSINE = -ZETA2 / ( ONE+T )
TMP = SQRT( SINE*SINE+COSINE*COSINE )
S = SINE / TMP
C = COSINE / TMP
SESTPR = SQRT( T+ONE )*ABSEST
RETURN
END IF
*
ELSE IF( JOB.EQ.2 ) THEN
*
*        Estimating smallest singular value
*
*        special cases
*
IF( SEST.EQ.ZERO ) THEN
SESTPR = ZERO
IF( MAX( ABSGAM, ABSALP ).EQ.ZERO ) THEN
SINE = ONE
COSINE = ZERO
ELSE
SINE = -GAMMA
COSINE = ALPHA
END IF
S1 = MAX( ABS( SINE ), ABS( COSINE ) )
S = SINE / S1
C = COSINE / S1
TMP = SQRT( S*S+C*C )
S = S / TMP
C = C / TMP
RETURN
ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
S = ZERO
C = ONE
SESTPR = ABSGAM
RETURN
ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
S1 = ABSGAM
S2 = ABSEST
IF( S1.LE.S2 ) THEN
S = ZERO
C = ONE
SESTPR = S1
ELSE
S = ONE
C = ZERO
SESTPR = S2
END IF
RETURN
ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
S1 = ABSGAM
S2 = ABSALP
IF( S1.LE.S2 ) THEN
TMP = S1 / S2
C = SQRT( ONE+TMP*TMP )
SESTPR = ABSEST*( TMP / C )
S = -( GAMMA / S2 ) / C
C = SIGN( ONE, ALPHA ) / C
ELSE
TMP = S2 / S1
S = SQRT( ONE+TMP*TMP )
SESTPR = ABSEST / S
C = ( ALPHA / S1 ) / S
S = -SIGN( ONE, GAMMA ) / S
END IF
RETURN
ELSE
*
*           normal case
*
ZETA1 = ALPHA / ABSEST
ZETA2 = GAMMA / ABSEST
*
NORMA = MAX( ONE+ZETA1*ZETA1+ABS( ZETA1*ZETA2 ),
\$              ABS( ZETA1*ZETA2 )+ZETA2*ZETA2 )
*
*           See if root is closer to zero or to ONE
*
TEST = ONE + TWO*( ZETA1-ZETA2 )*( ZETA1+ZETA2 )
IF( TEST.GE.ZERO ) THEN
*
*              root is close to zero, compute directly
*
B = ( ZETA1*ZETA1+ZETA2*ZETA2+ONE )*HALF
C = ZETA2*ZETA2
T = C / ( B+SQRT( ABS( B*B-C ) ) )
SINE = ZETA1 / ( ONE-T )
COSINE = -ZETA2 / T
SESTPR = SQRT( T+FOUR*EPS*EPS*NORMA )*ABSEST
ELSE
*
*              root is closer to ONE, shift by that amount
*
B = ( ZETA2*ZETA2+ZETA1*ZETA1-ONE )*HALF
C = ZETA1*ZETA1
IF( B.GE.ZERO ) THEN
T = -C / ( B+SQRT( B*B+C ) )
ELSE
T = B - SQRT( B*B+C )
END IF
SINE = -ZETA1 / T
COSINE = -ZETA2 / ( ONE+T )
SESTPR = SQRT( ONE+T+FOUR*EPS*EPS*NORMA )*ABSEST
END IF
TMP = SQRT( SINE*SINE+COSINE*COSINE )
S = SINE / TMP
C = COSINE / TMP
RETURN
*
END IF
END IF
RETURN
*
*     End of DLAIC1
*
END

```