```      SUBROUTINE CTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
*     .. Scalar Arguments ..
INTEGER INCX,N
CHARACTER DIAG,TRANS,UPLO
*     ..
*     .. Array Arguments ..
COMPLEX AP(*),X(*)
*     ..
*
*  Purpose
*  =======
*
*  CTPSV  solves one of the systems of equations
*
*     A*x = b,   or   A'*x = b,   or   conjg( A' )*x = b,
*
*  where b and x are n element vectors and A is an n by n unit, or
*  non-unit, upper or lower triangular matrix, supplied in packed form.
*
*  No test for singularity or near-singularity is included in this
*  routine. Such tests must be performed before calling this routine.
*
*  Arguments
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the equations to be solved as
*           follows:
*
*              TRANS = 'N' or 'n'   A*x = b.
*
*              TRANS = 'T' or 't'   A'*x = b.
*
*              TRANS = 'C' or 'c'   conjg( A' )*x = b.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit
*           triangular as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  AP     - COMPLEX          array of DIMENSION at least
*           ( ( n*( n + 1 ) )/2 ).
*           Before entry with  UPLO = 'U' or 'u', the array AP must
*           contain the upper triangular matrix packed sequentially,
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
*           respectively, and so on.
*           Before entry with UPLO = 'L' or 'l', the array AP must
*           contain the lower triangular matrix packed sequentially,
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
*           respectively, and so on.
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
*           A are not referenced, but are assumed to be unity.
*           Unchanged on exit.
*
*  X      - COMPLEX          array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element right-hand side vector b. On exit, X is overwritten
*           with the solution vector x.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
*     ..
*     .. Local Scalars ..
COMPLEX TEMP
INTEGER I,INFO,IX,J,JX,K,KK,KX
LOGICAL NOCONJ,NOUNIT
*     ..
*     .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
INTRINSIC CONJG
*     ..
*
*     Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+         .NOT.LSAME(TRANS,'C')) THEN
INFO = 2
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (INCX.EQ.0) THEN
INFO = 7
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CTPSV ',INFO)
RETURN
END IF
*
*     Quick return if possible.
*
IF (N.EQ.0) RETURN
*
NOCONJ = LSAME(TRANS,'T')
NOUNIT = LSAME(DIAG,'N')
*
*     Set up the start point in X if the increment is not unity. This
*     will be  ( N - 1 )*INCX  too small for descending loops.
*
IF (INCX.LE.0) THEN
KX = 1 - (N-1)*INCX
ELSE IF (INCX.NE.1) THEN
KX = 1
END IF
*
*     Start the operations. In this version the elements of AP are
*     accessed sequentially with one pass through AP.
*
IF (LSAME(TRANS,'N')) THEN
*
*        Form  x := inv( A )*x.
*
IF (LSAME(UPLO,'U')) THEN
KK = (N* (N+1))/2
IF (INCX.EQ.1) THEN
DO 20 J = N,1,-1
IF (X(J).NE.ZERO) THEN
IF (NOUNIT) X(J) = X(J)/AP(KK)
TEMP = X(J)
K = KK - 1
DO 10 I = J - 1,1,-1
X(I) = X(I) - TEMP*AP(K)
K = K - 1
10                     CONTINUE
END IF
KK = KK - J
20             CONTINUE
ELSE
JX = KX + (N-1)*INCX
DO 40 J = N,1,-1
IF (X(JX).NE.ZERO) THEN
IF (NOUNIT) X(JX) = X(JX)/AP(KK)
TEMP = X(JX)
IX = JX
DO 30 K = KK - 1,KK - J + 1,-1
IX = IX - INCX
X(IX) = X(IX) - TEMP*AP(K)
30                     CONTINUE
END IF
JX = JX - INCX
KK = KK - J
40             CONTINUE
END IF
ELSE
KK = 1
IF (INCX.EQ.1) THEN
DO 60 J = 1,N
IF (X(J).NE.ZERO) THEN
IF (NOUNIT) X(J) = X(J)/AP(KK)
TEMP = X(J)
K = KK + 1
DO 50 I = J + 1,N
X(I) = X(I) - TEMP*AP(K)
K = K + 1
50                     CONTINUE
END IF
KK = KK + (N-J+1)
60             CONTINUE
ELSE
JX = KX
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
IF (NOUNIT) X(JX) = X(JX)/AP(KK)
TEMP = X(JX)
IX = JX
DO 70 K = KK + 1,KK + N - J
IX = IX + INCX
X(IX) = X(IX) - TEMP*AP(K)
70                     CONTINUE
END IF
JX = JX + INCX
KK = KK + (N-J+1)
80             CONTINUE
END IF
END IF
ELSE
*
*        Form  x := inv( A' )*x  or  x := inv( conjg( A' ) )*x.
*
IF (LSAME(UPLO,'U')) THEN
KK = 1
IF (INCX.EQ.1) THEN
DO 110 J = 1,N
TEMP = X(J)
K = KK
IF (NOCONJ) THEN
DO 90 I = 1,J - 1
TEMP = TEMP - AP(K)*X(I)
K = K + 1
90                     CONTINUE
IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
ELSE
DO 100 I = 1,J - 1
TEMP = TEMP - CONJG(AP(K))*X(I)
K = K + 1
100                     CONTINUE
IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1))
END IF
X(J) = TEMP
KK = KK + J
110             CONTINUE
ELSE
JX = KX
DO 140 J = 1,N
TEMP = X(JX)
IX = KX
IF (NOCONJ) THEN
DO 120 K = KK,KK + J - 2
TEMP = TEMP - AP(K)*X(IX)
IX = IX + INCX
120                     CONTINUE
IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
ELSE
DO 130 K = KK,KK + J - 2
TEMP = TEMP - CONJG(AP(K))*X(IX)
IX = IX + INCX
130                     CONTINUE
IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1))
END IF
X(JX) = TEMP
JX = JX + INCX
KK = KK + J
140             CONTINUE
END IF
ELSE
KK = (N* (N+1))/2
IF (INCX.EQ.1) THEN
DO 170 J = N,1,-1
TEMP = X(J)
K = KK
IF (NOCONJ) THEN
DO 150 I = N,J + 1,-1
TEMP = TEMP - AP(K)*X(I)
K = K - 1
150                     CONTINUE
IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
ELSE
DO 160 I = N,J + 1,-1
TEMP = TEMP - CONJG(AP(K))*X(I)
K = K - 1
160                     CONTINUE
IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J))
END IF
X(J) = TEMP
KK = KK - (N-J+1)
170             CONTINUE
ELSE
KX = KX + (N-1)*INCX
JX = KX
DO 200 J = N,1,-1
TEMP = X(JX)
IX = KX
IF (NOCONJ) THEN
DO 180 K = KK,KK - (N- (J+1)),-1
TEMP = TEMP - AP(K)*X(IX)
IX = IX - INCX
180                     CONTINUE
IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
ELSE
DO 190 K = KK,KK - (N- (J+1)),-1
TEMP = TEMP - CONJG(AP(K))*X(IX)
IX = IX - INCX
190                     CONTINUE
IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J))
END IF
X(JX) = TEMP
JX = JX - INCX
KK = KK - (N-J+1)
200             CONTINUE
END IF
END IF
END IF
*
RETURN
*
*     End of CTPSV .
*
END

```