```      SUBROUTINE CGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
\$                   INFO )
*
*  -- LAPACK driver routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
INTEGER            INFO, LDA, LDB, LWORK, M, N, P
*     ..
*     .. Array Arguments ..
COMPLEX            A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
\$                   X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  CGGGLM solves a general Gauss-Markov linear model (GLM) problem:
*
*          minimize || y ||_2   subject to   d = A*x + B*y
*              x
*
*  where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
*  given N-vector. It is assumed that M <= N <= M+P, and
*
*             rank(A) = M    and    rank( A B ) = N.
*
*  Under these assumptions, the constrained equation is always
*  consistent, and there is a unique solution x and a minimal 2-norm
*  solution y, which is obtained using a generalized QR factorization
*  of the matrices (A, B) given by
*
*     A = Q*(R),   B = Q*T*Z.
*           (0)
*
*  In particular, if matrix B is square nonsingular, then the problem
*  GLM is equivalent to the following weighted linear least squares
*  problem
*
*               minimize || inv(B)*(d-A*x) ||_2
*                   x
*
*  where inv(B) denotes the inverse of B.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The number of rows of the matrices A and B.  N >= 0.
*
*  M       (input) INTEGER
*          The number of columns of the matrix A.  0 <= M <= N.
*
*  P       (input) INTEGER
*          The number of columns of the matrix B.  P >= N-M.
*
*  A       (input/output) COMPLEX array, dimension (LDA,M)
*          On entry, the N-by-M matrix A.
*          On exit, the upper triangular part of the array A contains
*          the M-by-M upper triangular matrix R.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,N).
*
*  B       (input/output) COMPLEX array, dimension (LDB,P)
*          On entry, the N-by-P matrix B.
*          On exit, if N <= P, the upper triangle of the subarray
*          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
*          if N > P, the elements on and above the (N-P)th subdiagonal
*          contain the N-by-P upper trapezoidal matrix T.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,N).
*
*  D       (input/output) COMPLEX array, dimension (N)
*          On entry, D is the left hand side of the GLM equation.
*          On exit, D is destroyed.
*
*  X       (output) COMPLEX array, dimension (M)
*  Y       (output) COMPLEX array, dimension (P)
*          On exit, X and Y are the solutions of the GLM problem.
*
*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,N+M+P).
*          For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
*          where NB is an upper bound for the optimal blocksizes for
*          CGEQRF, CGERQF, CUNMQR and CUNMRQ.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          = 1:  the upper triangular factor R associated with A in the
*                generalized QR factorization of the pair (A, B) is
*                singular, so that rank(A) < M; the least squares
*                solution could not be computed.
*          = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal
*                factor T associated with B in the generalized QR
*                factorization of the pair (A, B) is singular, so that
*                rank( A B ) < N; the least squares solution could not
*                be computed.
*
*  ===================================================================
*
*     .. Parameters ..
COMPLEX            CZERO, CONE
PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
\$                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
LOGICAL            LQUERY
INTEGER            I, LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3,
\$                   NB4, NP
*     ..
*     .. External Subroutines ..
EXTERNAL           CCOPY, CGEMV, CGGQRF, CTRTRS, CUNMQR, CUNMRQ,
\$                   XERBLA
*     ..
*     .. External Functions ..
INTEGER            ILAENV
EXTERNAL           ILAENV
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          INT, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
INFO = 0
NP = MIN( N, P )
LQUERY = ( LWORK.EQ.-1 )
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
INFO = -2
ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
*
*     Calculate workspace
*
IF( INFO.EQ.0) THEN
IF( N.EQ.0 ) THEN
LWKMIN = 1
LWKOPT = 1
ELSE
NB1 = ILAENV( 1, 'CGEQRF', ' ', N, M, -1, -1 )
NB2 = ILAENV( 1, 'CGERQF', ' ', N, M, -1, -1 )
NB3 = ILAENV( 1, 'CUNMQR', ' ', N, M, P, -1 )
NB4 = ILAENV( 1, 'CUNMRQ', ' ', N, M, P, -1 )
NB = MAX( NB1, NB2, NB3, NB4 )
LWKMIN = M + N + P
LWKOPT = M + NP + MAX( N, P )*NB
END IF
WORK( 1 ) = LWKOPT
*
IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGGGLM', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
*     Quick return if possible
*
IF( N.EQ.0 )
\$   RETURN
*
*     Compute the GQR factorization of matrices A and B:
*
*            Q'*A = ( R11 ) M,    Q'*B*Z' = ( T11   T12 ) M
*                   (  0  ) N-M             (  0    T22 ) N-M
*                      M                     M+P-N  N-M
*
*     where R11 and T22 are upper triangular, and Q and Z are
*     unitary.
*
CALL CGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ),
\$             WORK( M+NP+1 ), LWORK-M-NP, INFO )
LOPT = WORK( M+NP+1 )
*
*     Update left-hand-side vector d = Q'*d = ( d1 ) M
*                                             ( d2 ) N-M
*
CALL CUNMQR( 'Left', 'Conjugate transpose', N, 1, M, A, LDA, WORK,
\$             D, MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) )
*
*     Solve T22*y2 = d2 for y2
*
IF( N.GT.M ) THEN
CALL CTRTRS( 'Upper', 'No transpose', 'Non unit', N-M, 1,
\$                B( M+1, M+P-N+1 ), LDB, D( M+1 ), N-M, INFO )
*
IF( INFO.GT.0 ) THEN
INFO = 1
RETURN
END IF
*
CALL CCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 )
END IF
*
*     Set y1 = 0
*
DO 10 I = 1, M + P - N
Y( I ) = CZERO
10 CONTINUE
*
*     Update d1 = d1 - T12*y2
*
CALL CGEMV( 'No transpose', M, N-M, -CONE, B( 1, M+P-N+1 ), LDB,
\$            Y( M+P-N+1 ), 1, CONE, D, 1 )
*
*     Solve triangular system: R11*x = d1
*
IF( M.GT.0 ) THEN
CALL CTRTRS( 'Upper', 'No Transpose', 'Non unit', M, 1, A, LDA,
\$                D, M, INFO )
*
IF( INFO.GT.0 ) THEN
INFO = 2
RETURN
END IF
*
*        Copy D to X
*
CALL CCOPY( M, D, 1, X, 1 )
END IF
*
*     Backward transformation y = Z'*y
*
CALL CUNMRQ( 'Left', 'Conjugate transpose', P, 1, NP,
\$             B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y,
\$             MAX( 1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) )
*
RETURN
*
*     End of CGGGLM
*
END

```