Next: Bibliography Up: Computational Routines Previous: Computational Routines for the   Contents   Index

# Computational Routines for the Generalized Singular Value Decomposition

LA_GGSVP
Real version.

```
SUBROUTINE LA_GGSVP( JOBU, JOBV, JOBQ, &

M, P, N, A, LDA, B, LDB, TOLA, TOLB, K, &

L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, &

WORK, INFO )

CHARACTER(LEN=1), INTENT(IN) :: JOBQ, &

JOBU, JOBV

INTEGER, INTENT(IN) :: LDA, LDB, LDQ, &

LDU, LDV, M, N, P

INTEGER, INTENT(OUT) :: INFO, K, L, &

IWORK(*)

REAL(wp), INTENT(IN) :: TOLA, TOLB

REAL(wp), INTENT(INOUT) :: A(LDA,*), &

B(LDB,*)

REAL(wp), INTENT(OUT) :: Q(LDQ,*), TAU(*), &

U(LDU,*), V(LDV,*), WORK(*)

where
wp   ::= KIND(1.0)  KIND(1.0D0)
```

Complex version.

```
SUBROUTINE LA_GGSVP( JOBU, JOBV, JOBQ, &

M, P, N, A, LDA, B, LDB, TOLA, TOLB, K, &

L, U, LDU, V, LDV, Q, LDQ, IWORK, &

RWORK, TAU, WORK, INFO )

CHARACTER(LEN=1), INTENT(IN) :: JOBQ, &

JOBU, JOBV

INTEGER, INTENT(IN) :: LDA, LDB, LDQ, &

LDU, LDV, M, N, P

INTEGER, INTENT(OUT) :: INFO, K, L, &

IWORK(*)

REAL(wp), INTENT(IN) :: TOLA, TOLB

REAL(wp), INTENT(IN) :: RWORK(*)

COMPLEX(wp), INTENT(INOUT) :: A(LDA,*), &

B(LDB,*)

COMPLEX(wp), INTENT(OUT) :: Q(LDQ,*), &

TAU(*), U(LDU,*), V(LDV,*), WORK(*)

where
wp   ::= KIND(1.0)  KIND(1.0D0)
```

LA_GGSVP computes orthogonal / unitary matrices , and .
References: See  [1] and [9,20].
-----------------------------------

LA_TGSJA
Real and complex versions.

```
SUBROUTINE LA_TGSJA( JOBU, JOBV, JOBQ, &

M, P, N, K, L, A, LDA, B, LDB, TOLA, &

TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, &

LDQ, WORK, NCYCLE, INFO )

CHARACTER(LEN=1), INTENT(IN) :: JOBQ, &

JOBU, JOBV

INTEGER, INTENT(IN) :: K, L, LDA, LDB, &

LDQ, LDU, LDV, M, N, NCYCLE, P

INTEGER, INTENT(OUT) :: INFO

REAL(wp), INTENT(IN) :: TOLA, TOLB

REAL(wp), INTENT(OUT) :: ALPHA(*), &

BETA(*)
type(wp), INTENT(INOUT) :: A(LDA,*), &

B(LDB,*), Q(LDQ,*), U(LDU,*), V(LDV,*)
type(wp), INTENT(OUT) :: WORK(*)

where
type ::= REAL  COMPLEX
wp   ::= KIND(1.0)  KIND(1.0D0)
```

LA_TGSJA computes the generalized singular value decomposition (GSVD) of two real / complex upper triangular (or trapezoidal) matrices and .
References: See  [1] and [9,20].
-----------------------------------

Next: Bibliography Up: Computational Routines Previous: Computational Routines for the   Contents   Index
Susan Blackford 2001-08-19