```      SUBROUTINE SSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
\$                   LWORK, IWORK, LIWORK, INFO )
*
*  -- LAPACK driver routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
CHARACTER          JOBZ, UPLO
INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
*     ..
*     .. Array Arguments ..
INTEGER            IWORK( * )
REAL               A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SSYGVD computes all the eigenvalues, and optionally, the eigenvectors
*  of a real generalized symmetric-definite eigenproblem, of the form
*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
*  B are assumed to be symmetric and B is also positive definite.
*  If eigenvectors are desired, it uses a divide and conquer algorithm.
*
*  The divide and conquer algorithm makes very mild assumptions about
*  floating point arithmetic. It will work on machines with a guard
*  digit in add/subtract, or on those binary machines without guard
*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
*  Cray-2. It could conceivably fail on hexadecimal or decimal machines
*  without guard digits, but we know of none.
*
*  Arguments
*  =========
*
*  ITYPE   (input) INTEGER
*          Specifies the problem type to be solved:
*          = 1:  A*x = (lambda)*B*x
*          = 2:  A*B*x = (lambda)*x
*          = 3:  B*A*x = (lambda)*x
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangles of A and B are stored;
*          = 'L':  Lower triangles of A and B are stored.
*
*  N       (input) INTEGER
*          The order of the matrices A and B.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA, N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the
*          leading N-by-N upper triangular part of A contains the
*          upper triangular part of the matrix A.  If UPLO = 'L',
*          the leading N-by-N lower triangular part of A contains
*          the lower triangular part of the matrix A.
*
*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*          matrix Z of eigenvectors.  The eigenvectors are normalized
*          as follows:
*          if ITYPE = 1 or 2, Z**T*B*Z = I;
*          if ITYPE = 3, Z**T*inv(B)*Z = I.
*          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
*          or the lower triangle (if UPLO='L') of A, including the
*          diagonal, is destroyed.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  B       (input/output) REAL array, dimension (LDB, N)
*          On entry, the symmetric matrix B.  If UPLO = 'U', the
*          leading N-by-N upper triangular part of B contains the
*          upper triangular part of the matrix B.  If UPLO = 'L',
*          the leading N-by-N lower triangular part of B contains
*          the lower triangular part of the matrix B.
*
*          On exit, if INFO <= N, the part of B containing the matrix is
*          overwritten by the triangular factor U or L from the Cholesky
*          factorization B = U**T*U or B = L*L**T.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  W       (output) REAL array, dimension (N)
*          If INFO = 0, the eigenvalues in ascending order.
*
*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*          If N <= 1,               LWORK >= 1.
*          If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
*          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal sizes of the WORK and IWORK
*          arrays, returns these values as the first entries of the WORK
*          and IWORK arrays, and no error message related to LWORK or
*          LIWORK is issued by XERBLA.
*
*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK.
*          If N <= 1,                LIWORK >= 1.
*          If JOBZ  = 'N' and N > 1, LIWORK >= 1.
*          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
*
*          If LIWORK = -1, then a workspace query is assumed; the
*          routine only calculates the optimal sizes of the WORK and
*          IWORK arrays, returns these values as the first entries of
*          the WORK and IWORK arrays, and no error message related to
*          LWORK or LIWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  SPOTRF or SSYEVD returned an error code:
*             <= N:  if INFO = i and JOBZ = 'N', then the algorithm
*                    failed to converge; i off-diagonal elements of an
*                    intermediate tridiagonal form did not converge to
*                    zero;
*                    if INFO = i and JOBZ = 'V', then the algorithm
*                    failed to compute an eigenvalue while working on
*                    the submatrix lying in rows and columns INFO/(N+1)
*                    through mod(INFO,N+1);
*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
*                    minor of order i of B is not positive definite.
*                    The factorization of B could not be completed and
*                    no eigenvalues or eigenvectors were computed.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*
*  Modified so that no backsubstitution is performed if SSYEVD fails to
*  converge (NEIG in old code could be greater than N causing out of
*  bounds reference to A - reported by Ralf Meyer).  Also corrected the
*  description of INFO and the test on ITYPE. Sven, 16 Feb 05.
*  =====================================================================
*
*     .. Parameters ..
REAL               ONE
PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
LOGICAL            LQUERY, UPPER, WANTZ
CHARACTER          TRANS
INTEGER            LIOPT, LIWMIN, LOPT, LWMIN
*     ..
*     .. External Functions ..
LOGICAL            LSAME
EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
EXTERNAL           SPOTRF, SSYEVD, SSYGST, STRMM, STRSM, XERBLA
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          MAX, REAL
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
*
INFO = 0
IF( N.LE.1 ) THEN
LIWMIN = 1
LWMIN = 1
ELSE IF( WANTZ ) THEN
LIWMIN = 3 + 5*N
LWMIN = 1 + 6*N + 2*N**2
ELSE
LIWMIN = 1
LWMIN = 2*N + 1
END IF
LOPT = LWMIN
LIOPT = LIWMIN
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
*
IF( INFO.EQ.0 ) THEN
WORK( 1 ) = LOPT
IWORK( 1 ) = LIOPT
*
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -11
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
INFO = -13
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SSYGVD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
*     Quick return if possible
*
IF( N.EQ.0 )
\$   RETURN
*
*     Form a Cholesky factorization of B.
*
CALL SPOTRF( UPLO, N, B, LDB, INFO )
IF( INFO.NE.0 ) THEN
INFO = N + INFO
RETURN
END IF
*
*     Transform problem to standard eigenvalue problem and solve.
*
CALL SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
CALL SSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK,
\$             INFO )
LOPT = MAX( REAL( LOPT ), REAL( WORK( 1 ) ) )
LIOPT = MAX( REAL( LIOPT ), REAL( IWORK( 1 ) ) )
*
IF( WANTZ .AND. INFO.EQ.0 ) THEN
*
*        Backtransform eigenvectors to the original problem.
*
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
*
*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
*
IF( UPPER ) THEN
TRANS = 'N'
ELSE
TRANS = 'T'
END IF
*
CALL STRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
\$                  B, LDB, A, LDA )
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
*           For B*A*x=(lambda)*x;
*           backtransform eigenvectors: x = L*y or U'*y
*
IF( UPPER ) THEN
TRANS = 'T'
ELSE
TRANS = 'N'
END IF
*
CALL STRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
\$                  B, LDB, A, LDA )
END IF
END IF
*
WORK( 1 ) = LOPT
IWORK( 1 ) = LIOPT
*
RETURN
*
*     End of SSYGVD
*
END

```