```      SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
*
*  -- LAPACK driver routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
CHARACTER          JOBZ, UPLO
INTEGER            INFO, LDA, LWORK, N
*     ..
*     .. Array Arguments ..
DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DSYEV computes all eigenvalues and, optionally, eigenvectors of a
*  real symmetric matrix A.
*
*  Arguments
*  =========
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the
*          leading N-by-N upper triangular part of A contains the
*          upper triangular part of the matrix A.  If UPLO = 'L',
*          the leading N-by-N lower triangular part of A contains
*          the lower triangular part of the matrix A.
*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*          orthonormal eigenvectors of the matrix A.
*          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
*          or the upper triangle (if UPLO='U') of A, including the
*          diagonal, is destroyed.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  W       (output) DOUBLE PRECISION array, dimension (N)
*          If INFO = 0, the eigenvalues in ascending order.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The length of the array WORK.  LWORK >= max(1,3*N-1).
*          For optimal efficiency, LWORK >= (NB+2)*N,
*          where NB is the blocksize for DSYTRD returned by ILAENV.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, the algorithm failed to converge; i
*                off-diagonal elements of an intermediate tridiagonal
*                form did not converge to zero.
*
*  =====================================================================
*
*     .. Parameters ..
DOUBLE PRECISION   ZERO, ONE
PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
LOGICAL            LOWER, LQUERY, WANTZ
INTEGER            IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
\$                   LLWORK, LWKOPT, NB
DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
\$                   SMLNUM
*     ..
*     .. External Functions ..
LOGICAL            LSAME
INTEGER            ILAENV
DOUBLE PRECISION   DLAMCH, DLANSY
EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
*     ..
*     .. External Subroutines ..
EXTERNAL           DLASCL, DORGTR, DSCAL, DSTEQR, DSTERF, DSYTRD,
\$                   XERBLA
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          MAX, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
LOWER = LSAME( UPLO, 'L' )
LQUERY = ( LWORK.EQ.-1 )
*
INFO = 0
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
END IF
*
IF( INFO.EQ.0 ) THEN
NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
LWKOPT = MAX( 1, ( NB+2 )*N )
WORK( 1 ) = LWKOPT
*
IF( LWORK.LT.MAX( 1, 3*N-1 ) .AND. .NOT.LQUERY )
\$      INFO = -8
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DSYEV ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
*     Quick return if possible
*
IF( N.EQ.0 ) THEN
RETURN
END IF
*
IF( N.EQ.1 ) THEN
W( 1 ) = A( 1, 1 )
WORK( 1 ) = 2
IF( WANTZ )
\$      A( 1, 1 ) = ONE
RETURN
END IF
*
*     Get machine constants.
*
SAFMIN = DLAMCH( 'Safe minimum' )
EPS = DLAMCH( 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = SQRT( BIGNUM )
*
*     Scale matrix to allowable range, if necessary.
*
ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
ISCALE = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
ISCALE = 1
SIGMA = RMIN / ANRM
ELSE IF( ANRM.GT.RMAX ) THEN
ISCALE = 1
SIGMA = RMAX / ANRM
END IF
IF( ISCALE.EQ.1 )
\$   CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
*
*     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
*
INDE = 1
INDTAU = INDE + N
INDWRK = INDTAU + N
LLWORK = LWORK - INDWRK + 1
CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
\$             WORK( INDWRK ), LLWORK, IINFO )
*
*     For eigenvalues only, call DSTERF.  For eigenvectors, first call
*     DORGTR to generate the orthogonal matrix, then call DSTEQR.
*
IF( .NOT.WANTZ ) THEN
CALL DSTERF( N, W, WORK( INDE ), INFO )
ELSE
CALL DORGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
\$                LLWORK, IINFO )
CALL DSTEQR( JOBZ, N, W, WORK( INDE ), A, LDA, WORK( INDTAU ),
\$                INFO )
END IF
*
*     If matrix was scaled, then rescale eigenvalues appropriately.
*
IF( ISCALE.EQ.1 ) THEN
IF( INFO.EQ.0 ) THEN
IMAX = N
ELSE
IMAX = INFO - 1
END IF
CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
END IF
*
*     Set WORK(1) to optimal workspace size.
*
WORK( 1 ) = LWKOPT
*
RETURN
*
*     End of DSYEV
*
END

```