LAPACK
3.5.0
LAPACK: Linear Algebra PACKage

Go to the source code of this file.
Functions/Subroutines  
subroutine  dtbmv (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX) 
DTBMV More...  
subroutine dtbmv  (  character  UPLO, 
character  TRANS,  
character  DIAG,  
integer  N,  
integer  K,  
double precision, dimension(lda,*)  A,  
integer  LDA,  
double precision, dimension(*)  X,  
integer  INCX  
) 
DTBMV
DTBMV performs one of the matrixvector operations x := A*x, or x := A**T*x, where x is an n element vector and A is an n by n unit, or nonunit, upper or lower triangular band matrix, with ( k + 1 ) diagonals.
[in]  UPLO  UPLO is CHARACTER*1 On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. 
[in]  TRANS  TRANS is CHARACTER*1 On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A**T*x. TRANS = 'C' or 'c' x := A**T*x. 
[in]  DIAG  DIAG is CHARACTER*1 On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. 
[in]  N  N is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero. 
[in]  K  K is INTEGER On entry with UPLO = 'U' or 'u', K specifies the number of superdiagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of subdiagonals of the matrix A. K must satisfy 0 .le. K. 
[in]  A  A is DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first superdiagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1  J DO 10, I = MAX( 1, J  K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first subdiagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1  J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. 
[in]  LDA  LDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). 
[in,out]  X  X is DOUBLE PRECISION array of dimension at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. 
[in]  INCX  INCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero. 
Level 2 Blas routine. The vector and matrix arguments are not referenced when N = 0, or M = 0  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
Definition at line 187 of file dtbmv.f.