LAPACK  3.5.0 LAPACK: Linear Algebra PACKage
dspr.f File Reference

Go to the source code of this file.

## Functions/Subroutines

subroutine dspr (UPLO, N, ALPHA, X, INCX, AP)
DSPR More...

## Function/Subroutine Documentation

 subroutine dspr ( character UPLO, integer N, double precision ALPHA, double precision, dimension(*) X, integer INCX, double precision, dimension(*) AP )

DSPR

Purpose:
``` DSPR    performs the symmetric rank 1 operation

A := alpha*x*x**T + A,

where alpha is a real scalar, x is an n element vector and A is an
n by n symmetric matrix, supplied in packed form.```
Parameters
 [in] UPLO ``` UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP.``` [in] N ``` N is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.``` [in] ALPHA ``` ALPHA is DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha.``` [in] X ``` X is DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x.``` [in] INCX ``` INCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.``` [in,out] AP ``` AP is DOUBLE PRECISION array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix.```
Date
November 2011
Further Details:
```  Level 2 Blas routine.

-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.```

Definition at line 128 of file dspr.f.

Here is the call graph for this function:

Here is the caller graph for this function: