LAPACK  3.5.0 LAPACK: Linear Algebra PACKage
sgemv.f File Reference

Go to the source code of this file.

## Functions/Subroutines

subroutine sgemv (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
SGEMV More...

## Function/Subroutine Documentation

 subroutine sgemv ( character TRANS, integer M, integer N, real ALPHA, real, dimension(lda,*) A, integer LDA, real, dimension(*) X, integer INCX, real BETA, real, dimension(*) Y, integer INCY )

SGEMV

Purpose:
``` SGEMV  performs one of the matrix-vector operations

y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,

where alpha and beta are scalars, x and y are vectors and A is an
m by n matrix.```
Parameters
 [in] TRANS ``` TRANS is CHARACTER*1 On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y.``` [in] M ``` M is INTEGER On entry, M specifies the number of rows of the matrix A. M must be at least zero.``` [in] N ``` N is INTEGER On entry, N specifies the number of columns of the matrix A. N must be at least zero.``` [in] ALPHA ``` ALPHA is REAL On entry, ALPHA specifies the scalar alpha.``` [in] A ``` A is REAL array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients.``` [in] LDA ``` LDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ).``` [in] X ``` X is REAL array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x.``` [in] INCX ``` INCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.``` [in] BETA ``` BETA is REAL On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input.``` [in,out] Y ``` Y is REAL array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry with BETA non-zero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y.``` [in] INCY ``` INCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero.```
Date
November 2011
Further Details:
```  Level 2 Blas routine.
The vector and matrix arguments are not referenced when N = 0, or M = 0

-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.```

Definition at line 157 of file sgemv.f.

Here is the call graph for this function: