LAPACK  3.8.0
LAPACK: Linear Algebra PACKage
cunml2.f
Go to the documentation of this file.
1 *> \brief \b CUNML2 multiplies a general matrix by the unitary matrix from a LQ factorization determined by cgelqf (unblocked algorithm).
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download CUNML2 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunml2.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunml2.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunml2.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE CUNML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
22 * WORK, INFO )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER SIDE, TRANS
26 * INTEGER INFO, K, LDA, LDC, M, N
27 * ..
28 * .. Array Arguments ..
29 * COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
30 * ..
31 *
32 *
33 *> \par Purpose:
34 * =============
35 *>
36 *> \verbatim
37 *>
38 *> CUNML2 overwrites the general complex m-by-n matrix C with
39 *>
40 *> Q * C if SIDE = 'L' and TRANS = 'N', or
41 *>
42 *> Q**H* C if SIDE = 'L' and TRANS = 'C', or
43 *>
44 *> C * Q if SIDE = 'R' and TRANS = 'N', or
45 *>
46 *> C * Q**H if SIDE = 'R' and TRANS = 'C',
47 *>
48 *> where Q is a complex unitary matrix defined as the product of k
49 *> elementary reflectors
50 *>
51 *> Q = H(k)**H . . . H(2)**H H(1)**H
52 *>
53 *> as returned by CGELQF. Q is of order m if SIDE = 'L' and of order n
54 *> if SIDE = 'R'.
55 *> \endverbatim
56 *
57 * Arguments:
58 * ==========
59 *
60 *> \param[in] SIDE
61 *> \verbatim
62 *> SIDE is CHARACTER*1
63 *> = 'L': apply Q or Q**H from the Left
64 *> = 'R': apply Q or Q**H from the Right
65 *> \endverbatim
66 *>
67 *> \param[in] TRANS
68 *> \verbatim
69 *> TRANS is CHARACTER*1
70 *> = 'N': apply Q (No transpose)
71 *> = 'C': apply Q**H (Conjugate transpose)
72 *> \endverbatim
73 *>
74 *> \param[in] M
75 *> \verbatim
76 *> M is INTEGER
77 *> The number of rows of the matrix C. M >= 0.
78 *> \endverbatim
79 *>
80 *> \param[in] N
81 *> \verbatim
82 *> N is INTEGER
83 *> The number of columns of the matrix C. N >= 0.
84 *> \endverbatim
85 *>
86 *> \param[in] K
87 *> \verbatim
88 *> K is INTEGER
89 *> The number of elementary reflectors whose product defines
90 *> the matrix Q.
91 *> If SIDE = 'L', M >= K >= 0;
92 *> if SIDE = 'R', N >= K >= 0.
93 *> \endverbatim
94 *>
95 *> \param[in] A
96 *> \verbatim
97 *> A is COMPLEX array, dimension
98 *> (LDA,M) if SIDE = 'L',
99 *> (LDA,N) if SIDE = 'R'
100 *> The i-th row must contain the vector which defines the
101 *> elementary reflector H(i), for i = 1,2,...,k, as returned by
102 *> CGELQF in the first k rows of its array argument A.
103 *> A is modified by the routine but restored on exit.
104 *> \endverbatim
105 *>
106 *> \param[in] LDA
107 *> \verbatim
108 *> LDA is INTEGER
109 *> The leading dimension of the array A. LDA >= max(1,K).
110 *> \endverbatim
111 *>
112 *> \param[in] TAU
113 *> \verbatim
114 *> TAU is COMPLEX array, dimension (K)
115 *> TAU(i) must contain the scalar factor of the elementary
116 *> reflector H(i), as returned by CGELQF.
117 *> \endverbatim
118 *>
119 *> \param[in,out] C
120 *> \verbatim
121 *> C is COMPLEX array, dimension (LDC,N)
122 *> On entry, the m-by-n matrix C.
123 *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
124 *> \endverbatim
125 *>
126 *> \param[in] LDC
127 *> \verbatim
128 *> LDC is INTEGER
129 *> The leading dimension of the array C. LDC >= max(1,M).
130 *> \endverbatim
131 *>
132 *> \param[out] WORK
133 *> \verbatim
134 *> WORK is COMPLEX array, dimension
135 *> (N) if SIDE = 'L',
136 *> (M) if SIDE = 'R'
137 *> \endverbatim
138 *>
139 *> \param[out] INFO
140 *> \verbatim
141 *> INFO is INTEGER
142 *> = 0: successful exit
143 *> < 0: if INFO = -i, the i-th argument had an illegal value
144 *> \endverbatim
145 *
146 * Authors:
147 * ========
148 *
149 *> \author Univ. of Tennessee
150 *> \author Univ. of California Berkeley
151 *> \author Univ. of Colorado Denver
152 *> \author NAG Ltd.
153 *
154 *> \date December 2016
155 *
156 *> \ingroup complexOTHERcomputational
157 *
158 * =====================================================================
159  SUBROUTINE cunml2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
160  $ WORK, INFO )
161 *
162 * -- LAPACK computational routine (version 3.7.0) --
163 * -- LAPACK is a software package provided by Univ. of Tennessee, --
164 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
165 * December 2016
166 *
167 * .. Scalar Arguments ..
168  CHARACTER SIDE, TRANS
169  INTEGER INFO, K, LDA, LDC, M, N
170 * ..
171 * .. Array Arguments ..
172  COMPLEX A( lda, * ), C( ldc, * ), TAU( * ), WORK( * )
173 * ..
174 *
175 * =====================================================================
176 *
177 * .. Parameters ..
178  COMPLEX ONE
179  parameter( one = ( 1.0e+0, 0.0e+0 ) )
180 * ..
181 * .. Local Scalars ..
182  LOGICAL LEFT, NOTRAN
183  INTEGER I, I1, I2, I3, IC, JC, MI, NI, NQ
184  COMPLEX AII, TAUI
185 * ..
186 * .. External Functions ..
187  LOGICAL LSAME
188  EXTERNAL lsame
189 * ..
190 * .. External Subroutines ..
191  EXTERNAL clacgv, clarf, xerbla
192 * ..
193 * .. Intrinsic Functions ..
194  INTRINSIC conjg, max
195 * ..
196 * .. Executable Statements ..
197 *
198 * Test the input arguments
199 *
200  info = 0
201  left = lsame( side, 'L' )
202  notran = lsame( trans, 'N' )
203 *
204 * NQ is the order of Q
205 *
206  IF( left ) THEN
207  nq = m
208  ELSE
209  nq = n
210  END IF
211  IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
212  info = -1
213  ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
214  info = -2
215  ELSE IF( m.LT.0 ) THEN
216  info = -3
217  ELSE IF( n.LT.0 ) THEN
218  info = -4
219  ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
220  info = -5
221  ELSE IF( lda.LT.max( 1, k ) ) THEN
222  info = -7
223  ELSE IF( ldc.LT.max( 1, m ) ) THEN
224  info = -10
225  END IF
226  IF( info.NE.0 ) THEN
227  CALL xerbla( 'CUNML2', -info )
228  RETURN
229  END IF
230 *
231 * Quick return if possible
232 *
233  IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 )
234  $ RETURN
235 *
236  IF( ( left .AND. notran .OR. .NOT.left .AND. .NOT.notran ) ) THEN
237  i1 = 1
238  i2 = k
239  i3 = 1
240  ELSE
241  i1 = k
242  i2 = 1
243  i3 = -1
244  END IF
245 *
246  IF( left ) THEN
247  ni = n
248  jc = 1
249  ELSE
250  mi = m
251  ic = 1
252  END IF
253 *
254  DO 10 i = i1, i2, i3
255  IF( left ) THEN
256 *
257 * H(i) or H(i)**H is applied to C(i:m,1:n)
258 *
259  mi = m - i + 1
260  ic = i
261  ELSE
262 *
263 * H(i) or H(i)**H is applied to C(1:m,i:n)
264 *
265  ni = n - i + 1
266  jc = i
267  END IF
268 *
269 * Apply H(i) or H(i)**H
270 *
271  IF( notran ) THEN
272  taui = conjg( tau( i ) )
273  ELSE
274  taui = tau( i )
275  END IF
276  IF( i.LT.nq )
277  $ CALL clacgv( nq-i, a( i, i+1 ), lda )
278  aii = a( i, i )
279  a( i, i ) = one
280  CALL clarf( side, mi, ni, a( i, i ), lda, taui, c( ic, jc ),
281  $ ldc, work )
282  a( i, i ) = aii
283  IF( i.LT.nq )
284  $ CALL clacgv( nq-i, a( i, i+1 ), lda )
285  10 CONTINUE
286  RETURN
287 *
288 * End of CUNML2
289 *
290  END
subroutine cunml2(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO)
CUNML2 multiplies a general matrix by the unitary matrix from a LQ factorization determined by cgelqf...
Definition: cunml2.f:161
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine clacgv(N, X, INCX)
CLACGV conjugates a complex vector.
Definition: clacgv.f:76
subroutine clarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
CLARF applies an elementary reflector to a general rectangular matrix.
Definition: clarf.f:130