LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
sdrvls.f
Go to the documentation of this file.
1 *> \brief \b SDRVLS
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
12 * NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
13 * COPYB, C, S, COPYS, WORK, IWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NM, NN, NNB, NNS, NOUT
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
23 * \$ NVAL( * ), NXVAL( * )
24 * REAL A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
25 * \$ COPYS( * ), S( * ), WORK( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> SDRVLS tests the least squares driver routines SGELS, SGELSS, SGELSY
35 *> and SGELSD.
36 *> \endverbatim
37 *
38 * Arguments:
39 * ==========
40 *
41 *> \param[in] DOTYPE
42 *> \verbatim
43 *> DOTYPE is LOGICAL array, dimension (NTYPES)
44 *> The matrix types to be used for testing. Matrices of type j
45 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
46 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
47 *> The matrix of type j is generated as follows:
48 *> j=1: A = U*D*V where U and V are random orthogonal matrices
49 *> and D has random entries (> 0.1) taken from a uniform
50 *> distribution (0,1). A is full rank.
51 *> j=2: The same of 1, but A is scaled up.
52 *> j=3: The same of 1, but A is scaled down.
53 *> j=4: A = U*D*V where U and V are random orthogonal matrices
54 *> and D has 3*min(M,N)/4 random entries (> 0.1) taken
55 *> from a uniform distribution (0,1) and the remaining
56 *> entries set to 0. A is rank-deficient.
57 *> j=5: The same of 4, but A is scaled up.
58 *> j=6: The same of 5, but A is scaled down.
59 *> \endverbatim
60 *>
61 *> \param[in] NM
62 *> \verbatim
63 *> NM is INTEGER
64 *> The number of values of M contained in the vector MVAL.
65 *> \endverbatim
66 *>
67 *> \param[in] MVAL
68 *> \verbatim
69 *> MVAL is INTEGER array, dimension (NM)
70 *> The values of the matrix row dimension M.
71 *> \endverbatim
72 *>
73 *> \param[in] NN
74 *> \verbatim
75 *> NN is INTEGER
76 *> The number of values of N contained in the vector NVAL.
77 *> \endverbatim
78 *>
79 *> \param[in] NVAL
80 *> \verbatim
81 *> NVAL is INTEGER array, dimension (NN)
82 *> The values of the matrix column dimension N.
83 *> \endverbatim
84 *>
85 *> \param[in] NNS
86 *> \verbatim
87 *> NNS is INTEGER
88 *> The number of values of NRHS contained in the vector NSVAL.
89 *> \endverbatim
90 *>
91 *> \param[in] NSVAL
92 *> \verbatim
93 *> NSVAL is INTEGER array, dimension (NNS)
94 *> The values of the number of right hand sides NRHS.
95 *> \endverbatim
96 *>
97 *> \param[in] NNB
98 *> \verbatim
99 *> NNB is INTEGER
100 *> The number of values of NB and NX contained in the
101 *> vectors NBVAL and NXVAL. The blocking parameters are used
102 *> in pairs (NB,NX).
103 *> \endverbatim
104 *>
105 *> \param[in] NBVAL
106 *> \verbatim
107 *> NBVAL is INTEGER array, dimension (NNB)
108 *> The values of the blocksize NB.
109 *> \endverbatim
110 *>
111 *> \param[in] NXVAL
112 *> \verbatim
113 *> NXVAL is INTEGER array, dimension (NNB)
114 *> The values of the crossover point NX.
115 *> \endverbatim
116 *>
117 *> \param[in] THRESH
118 *> \verbatim
119 *> THRESH is REAL
120 *> The threshold value for the test ratios. A result is
121 *> included in the output file if RESULT >= THRESH. To have
122 *> every test ratio printed, use THRESH = 0.
123 *> \endverbatim
124 *>
125 *> \param[in] TSTERR
126 *> \verbatim
127 *> TSTERR is LOGICAL
128 *> Flag that indicates whether error exits are to be tested.
129 *> \endverbatim
130 *>
131 *> \param[out] A
132 *> \verbatim
133 *> A is REAL array, dimension (MMAX*NMAX)
134 *> where MMAX is the maximum value of M in MVAL and NMAX is the
135 *> maximum value of N in NVAL.
136 *> \endverbatim
137 *>
138 *> \param[out] COPYA
139 *> \verbatim
140 *> COPYA is REAL array, dimension (MMAX*NMAX)
141 *> \endverbatim
142 *>
143 *> \param[out] B
144 *> \verbatim
145 *> B is REAL array, dimension (MMAX*NSMAX)
146 *> where MMAX is the maximum value of M in MVAL and NSMAX is the
147 *> maximum value of NRHS in NSVAL.
148 *> \endverbatim
149 *>
150 *> \param[out] COPYB
151 *> \verbatim
152 *> COPYB is REAL array, dimension (MMAX*NSMAX)
153 *> \endverbatim
154 *>
155 *> \param[out] C
156 *> \verbatim
157 *> C is REAL array, dimension (MMAX*NSMAX)
158 *> \endverbatim
159 *>
160 *> \param[out] S
161 *> \verbatim
162 *> S is REAL array, dimension
163 *> (min(MMAX,NMAX))
164 *> \endverbatim
165 *>
166 *> \param[out] COPYS
167 *> \verbatim
168 *> COPYS is REAL array, dimension
169 *> (min(MMAX,NMAX))
170 *> \endverbatim
171 *>
172 *> \param[out] WORK
173 *> \verbatim
174 *> WORK is REAL array,
175 *> dimension (MMAX*NMAX + 4*NMAX + MMAX).
176 *> \endverbatim
177 *>
178 *> \param[out] IWORK
179 *> \verbatim
180 *> IWORK is INTEGER array, dimension (15*NMAX)
181 *> \endverbatim
182 *>
183 *> \param[in] NOUT
184 *> \verbatim
185 *> NOUT is INTEGER
186 *> The unit number for output.
187 *> \endverbatim
188 *
189 * Authors:
190 * ========
191 *
192 *> \author Univ. of Tennessee
193 *> \author Univ. of California Berkeley
194 *> \author Univ. of Colorado Denver
195 *> \author NAG Ltd.
196 *
197 *> \date November 2015
198 *
199 *> \ingroup single_lin
200 *
201 * =====================================================================
202  SUBROUTINE sdrvls( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
203  \$ nbval, nxval, thresh, tsterr, a, copya, b,
204  \$ copyb, c, s, copys, work, iwork, nout )
205 *
206 * -- LAPACK test routine (version 3.6.0) --
207 * -- LAPACK is a software package provided by Univ. of Tennessee, --
208 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
209 * November 2015
210 *
211 * .. Scalar Arguments ..
212  LOGICAL TSTERR
213  INTEGER NM, NN, NNB, NNS, NOUT
214  REAL THRESH
215 * ..
216 * .. Array Arguments ..
217  LOGICAL DOTYPE( * )
218  INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
219  \$ nval( * ), nxval( * )
220  REAL A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
221  \$ copys( * ), s( * ), work( * )
222 * ..
223 *
224 * =====================================================================
225 *
226 * .. Parameters ..
227  INTEGER NTESTS
228  parameter ( ntests = 14 )
229  INTEGER SMLSIZ
230  parameter ( smlsiz = 25 )
231  REAL ONE, TWO, ZERO
232  parameter ( one = 1.0e0, two = 2.0e0, zero = 0.0e0 )
233 * ..
234 * .. Local Scalars ..
235  CHARACTER TRANS
236  CHARACTER*3 PATH
237  INTEGER CRANK, I, IM, IN, INB, INFO, INS, IRANK,
238  \$ iscale, itran, itype, j, k, lda, ldb, ldwork,
239  \$ lwlsy, lwork, m, mnmin, n, nb, ncols, nerrs,
240  \$ nfail, nlvl, nrhs, nrows, nrun, rank
241  REAL EPS, NORMA, NORMB, RCOND
242 * ..
243 * .. Local Arrays ..
244  INTEGER ISEED( 4 ), ISEEDY( 4 )
245  REAL RESULT( ntests )
246 * ..
247 * .. External Functions ..
248  REAL SASUM, SLAMCH, SQRT12, SQRT14, SQRT17
249  EXTERNAL sasum, slamch, sqrt12, sqrt14, sqrt17
250 * ..
251 * .. External Subroutines ..
252  EXTERNAL alaerh, alahd, alasvm, saxpy, serrls, sgels,
255  \$ xlaenv
256 * ..
257 * .. Intrinsic Functions ..
258  INTRINSIC int, log, max, min, REAL, SQRT
259 * ..
260 * .. Scalars in Common ..
261  LOGICAL LERR, OK
262  CHARACTER*32 SRNAMT
263  INTEGER INFOT, IOUNIT
264 * ..
265 * .. Common blocks ..
266  COMMON / infoc / infot, iounit, ok, lerr
267  COMMON / srnamc / srnamt
268 * ..
269 * .. Data statements ..
270  DATA iseedy / 1988, 1989, 1990, 1991 /
271 * ..
272 * .. Executable Statements ..
273 *
274 * Initialize constants and the random number seed.
275 *
276  path( 1: 1 ) = 'Single precision'
277  path( 2: 3 ) = 'LS'
278  nrun = 0
279  nfail = 0
280  nerrs = 0
281  DO 10 i = 1, 4
282  iseed( i ) = iseedy( i )
283  10 CONTINUE
284  eps = slamch( 'Epsilon' )
285 *
286 * Threshold for rank estimation
287 *
288  rcond = sqrt( eps ) - ( sqrt( eps )-eps ) / 2
289 *
290 * Test the error exits
291 *
292  CALL xlaenv( 2, 2 )
293  CALL xlaenv( 9, smlsiz )
294  IF( tsterr )
295  \$ CALL serrls( path, nout )
296 *
297 * Print the header if NM = 0 or NN = 0 and THRESH = 0.
298 *
299  IF( ( nm.EQ.0 .OR. nn.EQ.0 ) .AND. thresh.EQ.zero )
300  \$ CALL alahd( nout, path )
301  infot = 0
302 *
303  DO 150 im = 1, nm
304  m = mval( im )
305  lda = max( 1, m )
306 *
307  DO 140 in = 1, nn
308  n = nval( in )
309  mnmin = min( m, n )
310  ldb = max( 1, m, n )
311 *
312  DO 130 ins = 1, nns
313  nrhs = nsval( ins )
314  nlvl = max( int( log( max( one, REAL( MNMIN ) ) /
315  \$ REAL( SMLSIZ+1 ) ) / log( TWO ) ) + 1, 0 )
316  lwork = max( 1, ( m+nrhs )*( n+2 ), ( n+nrhs )*( m+2 ),
317  \$ m*n+4*mnmin+max( m, n ), 12*mnmin+2*mnmin*smlsiz+
318  \$ 8*mnmin*nlvl+mnmin*nrhs+(smlsiz+1)**2 )
319 *
320  DO 120 irank = 1, 2
321  DO 110 iscale = 1, 3
322  itype = ( irank-1 )*3 + iscale
323  IF( .NOT.dotype( itype ) )
324  \$ GO TO 110
325 *
326  IF( irank.EQ.1 ) THEN
327 *
328 * Test SGELS
329 *
330 * Generate a matrix of scaling type ISCALE
331 *
332  CALL sqrt13( iscale, m, n, copya, lda, norma,
333  \$ iseed )
334  DO 40 inb = 1, nnb
335  nb = nbval( inb )
336  CALL xlaenv( 1, nb )
337  CALL xlaenv( 3, nxval( inb ) )
338 *
339  DO 30 itran = 1, 2
340  IF( itran.EQ.1 ) THEN
341  trans = 'N'
342  nrows = m
343  ncols = n
344  ELSE
345  trans = 'T'
346  nrows = n
347  ncols = m
348  END IF
349  ldwork = max( 1, ncols )
350 *
351 * Set up a consistent rhs
352 *
353  IF( ncols.GT.0 ) THEN
354  CALL slarnv( 2, iseed, ncols*nrhs,
355  \$ work )
356  CALL sscal( ncols*nrhs,
357  \$ one / REAL( NCOLS ), WORK,
358  \$ 1 )
359  END IF
360  CALL sgemm( trans, 'No transpose', nrows,
361  \$ nrhs, ncols, one, copya, lda,
362  \$ work, ldwork, zero, b, ldb )
363  CALL slacpy( 'Full', nrows, nrhs, b, ldb,
364  \$ copyb, ldb )
365 *
366 * Solve LS or overdetermined system
367 *
368  IF( m.GT.0 .AND. n.GT.0 ) THEN
369  CALL slacpy( 'Full', m, n, copya, lda,
370  \$ a, lda )
371  CALL slacpy( 'Full', nrows, nrhs,
372  \$ copyb, ldb, b, ldb )
373  END IF
374  srnamt = 'SGELS '
375  CALL sgels( trans, m, n, nrhs, a, lda, b,
376  \$ ldb, work, lwork, info )
377  IF( info.NE.0 )
378  \$ CALL alaerh( path, 'SGELS ', info, 0,
379  \$ trans, m, n, nrhs, -1, nb,
380  \$ itype, nfail, nerrs,
381  \$ nout )
382 *
383 * Check correctness of results
384 *
385  ldwork = max( 1, nrows )
386  IF( nrows.GT.0 .AND. nrhs.GT.0 )
387  \$ CALL slacpy( 'Full', nrows, nrhs,
388  \$ copyb, ldb, c, ldb )
389  CALL sqrt16( trans, m, n, nrhs, copya,
390  \$ lda, b, ldb, c, ldb, work,
391  \$ result( 1 ) )
392 *
393  IF( ( itran.EQ.1 .AND. m.GE.n ) .OR.
394  \$ ( itran.EQ.2 .AND. m.LT.n ) ) THEN
395 *
396 * Solving LS system
397 *
398  result( 2 ) = sqrt17( trans, 1, m, n,
399  \$ nrhs, copya, lda, b, ldb,
400  \$ copyb, ldb, c, work,
401  \$ lwork )
402  ELSE
403 *
404 * Solving overdetermined system
405 *
406  result( 2 ) = sqrt14( trans, m, n,
407  \$ nrhs, copya, lda, b, ldb,
408  \$ work, lwork )
409  END IF
410 *
411 * Print information about the tests that
412 * did not pass the threshold.
413 *
414  DO 20 k = 1, 2
415  IF( result( k ).GE.thresh ) THEN
416  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
417  \$ CALL alahd( nout, path )
418  WRITE( nout, fmt = 9999 )trans, m,
419  \$ n, nrhs, nb, itype, k,
420  \$ result( k )
421  nfail = nfail + 1
422  END IF
423  20 CONTINUE
424  nrun = nrun + 2
425  30 CONTINUE
426  40 CONTINUE
427  END IF
428 *
429 * Generate a matrix of scaling type ISCALE and rank
430 * type IRANK.
431 *
432  CALL sqrt15( iscale, irank, m, n, nrhs, copya, lda,
433  \$ copyb, ldb, copys, rank, norma, normb,
434  \$ iseed, work, lwork )
435 *
436 * workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
437 *
438  ldwork = max( 1, m )
439 *
440 * Loop for testing different block sizes.
441 *
442  DO 100 inb = 1, nnb
443  nb = nbval( inb )
444  CALL xlaenv( 1, nb )
445  CALL xlaenv( 3, nxval( inb ) )
446 *
447 * Test SGELSY
448 *
449 * SGELSY: Compute the minimum-norm solution X
450 * to min( norm( A * X - B ) )
451 * using the rank-revealing orthogonal
452 * factorization.
453 *
454 * Initialize vector IWORK.
455 *
456  DO 70 j = 1, n
457  iwork( j ) = 0
458  70 CONTINUE
459 *
460 * Set LWLSY to the adequate value.
461 *
462  lwlsy = max( 1, mnmin+2*n+nb*( n+1 ),
463  \$ 2*mnmin+nb*nrhs )
464 *
465  CALL slacpy( 'Full', m, n, copya, lda, a, lda )
466  CALL slacpy( 'Full', m, nrhs, copyb, ldb, b,
467  \$ ldb )
468 *
469  srnamt = 'SGELSY'
470  CALL sgelsy( m, n, nrhs, a, lda, b, ldb, iwork,
471  \$ rcond, crank, work, lwlsy, info )
472  IF( info.NE.0 )
473  \$ CALL alaerh( path, 'SGELSY', info, 0, ' ', m,
474  \$ n, nrhs, -1, nb, itype, nfail,
475  \$ nerrs, nout )
476 *
477 * Test 3: Compute relative error in svd
478 * workspace: M*N + 4*MIN(M,N) + MAX(M,N)
479 *
480  result( 3 ) = sqrt12( crank, crank, a, lda,
481  \$ copys, work, lwork )
482 *
483 * Test 4: Compute error in solution
484 * workspace: M*NRHS + M
485 *
486  CALL slacpy( 'Full', m, nrhs, copyb, ldb, work,
487  \$ ldwork )
488  CALL sqrt16( 'No transpose', m, n, nrhs, copya,
489  \$ lda, b, ldb, work, ldwork,
490  \$ work( m*nrhs+1 ), result( 4 ) )
491 *
492 * Test 5: Check norm of r'*A
493 * workspace: NRHS*(M+N)
494 *
495  result( 5 ) = zero
496  IF( m.GT.crank )
497  \$ result( 5 ) = sqrt17( 'No transpose', 1, m,
498  \$ n, nrhs, copya, lda, b, ldb,
499  \$ copyb, ldb, c, work, lwork )
500 *
501 * Test 6: Check if x is in the rowspace of A
502 * workspace: (M+NRHS)*(N+2)
503 *
504  result( 6 ) = zero
505 *
506  IF( n.GT.crank )
507  \$ result( 6 ) = sqrt14( 'No transpose', m, n,
508  \$ nrhs, copya, lda, b, ldb,
509  \$ work, lwork )
510 *
511 * Test SGELSS
512 *
513 * SGELSS: Compute the minimum-norm solution X
514 * to min( norm( A * X - B ) )
515 * using the SVD.
516 *
517  CALL slacpy( 'Full', m, n, copya, lda, a, lda )
518  CALL slacpy( 'Full', m, nrhs, copyb, ldb, b,
519  \$ ldb )
520  srnamt = 'SGELSS'
521  CALL sgelss( m, n, nrhs, a, lda, b, ldb, s,
522  \$ rcond, crank, work, lwork, info )
523  IF( info.NE.0 )
524  \$ CALL alaerh( path, 'SGELSS', info, 0, ' ', m,
525  \$ n, nrhs, -1, nb, itype, nfail,
526  \$ nerrs, nout )
527 *
528 * workspace used: 3*min(m,n) +
529 * max(2*min(m,n),nrhs,max(m,n))
530 *
531 * Test 7: Compute relative error in svd
532 *
533  IF( rank.GT.0 ) THEN
534  CALL saxpy( mnmin, -one, copys, 1, s, 1 )
535  result( 7 ) = sasum( mnmin, s, 1 ) /
536  \$ sasum( mnmin, copys, 1 ) /
537  \$ ( eps*REAL( MNMIN ) )
538  ELSE
539  result( 7 ) = zero
540  END IF
541 *
542 * Test 8: Compute error in solution
543 *
544  CALL slacpy( 'Full', m, nrhs, copyb, ldb, work,
545  \$ ldwork )
546  CALL sqrt16( 'No transpose', m, n, nrhs, copya,
547  \$ lda, b, ldb, work, ldwork,
548  \$ work( m*nrhs+1 ), result( 8 ) )
549 *
550 * Test 9: Check norm of r'*A
551 *
552  result( 9 ) = zero
553  IF( m.GT.crank )
554  \$ result( 9 ) = sqrt17( 'No transpose', 1, m,
555  \$ n, nrhs, copya, lda, b, ldb,
556  \$ copyb, ldb, c, work, lwork )
557 *
558 * Test 10: Check if x is in the rowspace of A
559 *
560  result( 10 ) = zero
561  IF( n.GT.crank )
562  \$ result( 10 ) = sqrt14( 'No transpose', m, n,
563  \$ nrhs, copya, lda, b, ldb,
564  \$ work, lwork )
565 *
566 * Test SGELSD
567 *
568 * SGELSD: Compute the minimum-norm solution X
569 * to min( norm( A * X - B ) ) using a
570 * divide and conquer SVD.
571 *
572 * Initialize vector IWORK.
573 *
574  DO 80 j = 1, n
575  iwork( j ) = 0
576  80 CONTINUE
577 *
578  CALL slacpy( 'Full', m, n, copya, lda, a, lda )
579  CALL slacpy( 'Full', m, nrhs, copyb, ldb, b,
580  \$ ldb )
581 *
582  srnamt = 'SGELSD'
583  CALL sgelsd( m, n, nrhs, a, lda, b, ldb, s,
584  \$ rcond, crank, work, lwork, iwork,
585  \$ info )
586  IF( info.NE.0 )
587  \$ CALL alaerh( path, 'SGELSD', info, 0, ' ', m,
588  \$ n, nrhs, -1, nb, itype, nfail,
589  \$ nerrs, nout )
590 *
591 * Test 11: Compute relative error in svd
592 *
593  IF( rank.GT.0 ) THEN
594  CALL saxpy( mnmin, -one, copys, 1, s, 1 )
595  result( 11 ) = sasum( mnmin, s, 1 ) /
596  \$ sasum( mnmin, copys, 1 ) /
597  \$ ( eps*REAL( MNMIN ) )
598  ELSE
599  result( 11 ) = zero
600  END IF
601 *
602 * Test 12: Compute error in solution
603 *
604  CALL slacpy( 'Full', m, nrhs, copyb, ldb, work,
605  \$ ldwork )
606  CALL sqrt16( 'No transpose', m, n, nrhs, copya,
607  \$ lda, b, ldb, work, ldwork,
608  \$ work( m*nrhs+1 ), result( 12 ) )
609 *
610 * Test 13: Check norm of r'*A
611 *
612  result( 13 ) = zero
613  IF( m.GT.crank )
614  \$ result( 13 ) = sqrt17( 'No transpose', 1, m,
615  \$ n, nrhs, copya, lda, b, ldb,
616  \$ copyb, ldb, c, work, lwork )
617 *
618 * Test 14: Check if x is in the rowspace of A
619 *
620  result( 14 ) = zero
621  IF( n.GT.crank )
622  \$ result( 14 ) = sqrt14( 'No transpose', m, n,
623  \$ nrhs, copya, lda, b, ldb,
624  \$ work, lwork )
625 *
626 * Print information about the tests that did not
627 * pass the threshold.
628 *
629  DO 90 k = 3, ntests
630  IF( result( k ).GE.thresh ) THEN
631  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
632  \$ CALL alahd( nout, path )
633  WRITE( nout, fmt = 9998 )m, n, nrhs, nb,
634  \$ itype, k, result( k )
635  nfail = nfail + 1
636  END IF
637  90 CONTINUE
638  nrun = nrun + 12
639 *
640  100 CONTINUE
641  110 CONTINUE
642  120 CONTINUE
643  130 CONTINUE
644  140 CONTINUE
645  150 CONTINUE
646 *
647 * Print a summary of the results.
648 *
649  CALL alasvm( path, nout, nfail, nrun, nerrs )
650 *
651  9999 FORMAT( ' TRANS=''', a1, ''', M=', i5, ', N=', i5, ', NRHS=', i4,
652  \$ ', NB=', i4, ', type', i2, ', test(', i2, ')=', g12.5 )
653  9998 FORMAT( ' M=', i5, ', N=', i5, ', NRHS=', i4, ', NB=', i4,
654  \$ ', type', i2, ', test(', i2, ')=', g12.5 )
655  RETURN
656 *
657 * End of SDRVLS
658 *
659  END
subroutine sqrt15(SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S, RANK, NORMA, NORMB, ISEED, WORK, LWORK)
SQRT15
Definition: sqrt15.f:150
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:75
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:95
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine sgelsd(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, IWORK, INFO)
SGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices ...
Definition: sgelsd.f:212
subroutine slarnv(IDIST, ISEED, N, X)
SLARNV returns a vector of random numbers from a uniform or normal distribution.
Definition: slarnv.f:99
subroutine sgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
SGEMM
Definition: sgemm.f:189
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:105
subroutine sqrt16(TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
SQRT16
Definition: sqrt16.f:135
subroutine sgels(TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, INFO)
SGELS solves overdetermined or underdetermined systems for GE matrices
Definition: sgels.f:185
subroutine sqrt13(SCALE, M, N, A, LDA, NORMA, ISEED)
SQRT13
Definition: sqrt13.f:93
subroutine sdrvls(DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B, COPYB, C, S, COPYS, WORK, IWORK, NOUT)
SDRVLS
Definition: sdrvls.f:205
subroutine sgelsy(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, WORK, LWORK, INFO)
SGELSY solves overdetermined or underdetermined systems for GE matrices
Definition: sgelsy.f:206
subroutine saxpy(N, SA, SX, INCX, SY, INCY)
SAXPY
Definition: saxpy.f:54
subroutine sgelss(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, INFO)
SGELSS solves overdetermined or underdetermined systems for GE matrices
Definition: sgelss.f:174
subroutine sscal(N, SA, SX, INCX)
SSCAL
Definition: sscal.f:55
subroutine serrls(PATH, NUNIT)
SERRLS
Definition: serrls.f:57