 LAPACK  3.4.2 LAPACK: Linear Algebra PACKage
Collaboration diagram for real:


This browser is not able to show SVG: try Firefox, Chrome, Safari, or Opera instead.

## Functions/Subroutines

subroutine sgemm (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
SGEMM
subroutine ssymm (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
SSYMM
subroutine ssyr2k (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
SSYR2K
subroutine ssyrk (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)
SSYRK
subroutine strmm (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
STRMM
subroutine strsm (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
STRSM

## Detailed Description

This is the group of real LEVEL 3 BLAS routines.

## Function/Subroutine Documentation

 subroutine sgemm ( character TRANSA, character TRANSB, integer M, integer N, integer K, real ALPHA, real, dimension(lda,*) A, integer LDA, real, dimension(ldb,*) B, integer LDB, real BETA, real, dimension(ldc,*) C, integer LDC )

SGEMM

Purpose:
``` SGEMM  performs one of the matrix-matrix operations

C := alpha*op( A )*op( B ) + beta*C,

where  op( X ) is one of

op( X ) = X   or   op( X ) = X**T,

alpha and beta are scalars, and A, B and C are matrices, with op( A )
an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.```
Parameters:
 [in] TRANSA ``` TRANSA is CHARACTER*1 On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n', op( A ) = A. TRANSA = 'T' or 't', op( A ) = A**T. TRANSA = 'C' or 'c', op( A ) = A**T.``` [in] TRANSB ``` TRANSB is CHARACTER*1 On entry, TRANSB specifies the form of op( B ) to be used in the matrix multiplication as follows: TRANSB = 'N' or 'n', op( B ) = B. TRANSB = 'T' or 't', op( B ) = B**T. TRANSB = 'C' or 'c', op( B ) = B**T.``` [in] M ``` M is INTEGER On entry, M specifies the number of rows of the matrix op( A ) and of the matrix C. M must be at least zero.``` [in] N ``` N is INTEGER On entry, N specifies the number of columns of the matrix op( B ) and the number of columns of the matrix C. N must be at least zero.``` [in] K ``` K is INTEGER On entry, K specifies the number of columns of the matrix op( A ) and the number of rows of the matrix op( B ). K must be at least zero.``` [in] ALPHA ``` ALPHA is REAL On entry, ALPHA specifies the scalar alpha.``` [in] A ``` A is REAL array of DIMENSION ( LDA, ka ), where ka is k when TRANSA = 'N' or 'n', and is m otherwise. Before entry with TRANSA = 'N' or 'n', the leading m by k part of the array A must contain the matrix A, otherwise the leading k by m part of the array A must contain the matrix A.``` [in] LDA ``` LDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANSA = 'N' or 'n' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, k ).``` [in] B ``` B is REAL array of DIMENSION ( LDB, kb ), where kb is n when TRANSB = 'N' or 'n', and is k otherwise. Before entry with TRANSB = 'N' or 'n', the leading k by n part of the array B must contain the matrix B, otherwise the leading n by k part of the array B must contain the matrix B.``` [in] LDB ``` LDB is INTEGER On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANSB = 'N' or 'n' then LDB must be at least max( 1, k ), otherwise LDB must be at least max( 1, n ).``` [in] BETA ``` BETA is REAL On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input.``` [in,out] C ``` C is REAL array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n matrix ( alpha*op( A )*op( B ) + beta*C ).``` [in] LDC ``` LDC is INTEGER On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ).```
Date:
November 2011
Further Details:
```  Level 3 Blas routine.

-- Written on 8-February-1989.
Jack Dongarra, Argonne National Laboratory.
Iain Duff, AERE Harwell.
Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.```

Definition at line 188 of file sgemm.f.

Here is the call graph for this function:

 subroutine ssymm ( character SIDE, character UPLO, integer M, integer N, real ALPHA, real, dimension(lda,*) A, integer LDA, real, dimension(ldb,*) B, integer LDB, real BETA, real, dimension(ldc,*) C, integer LDC )

SSYMM

Purpose:
``` SSYMM  performs one of the matrix-matrix operations

C := alpha*A*B + beta*C,

or

C := alpha*B*A + beta*C,

where alpha and beta are scalars,  A is a symmetric matrix and  B and
C are  m by n matrices.```
Parameters:
 [in] SIDE ``` SIDE is CHARACTER*1 On entry, SIDE specifies whether the symmetric matrix A appears on the left or right in the operation as follows: SIDE = 'L' or 'l' C := alpha*A*B + beta*C, SIDE = 'R' or 'r' C := alpha*B*A + beta*C,``` [in] UPLO ``` UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the symmetric matrix A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of the symmetric matrix is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of the symmetric matrix is to be referenced.``` [in] M ``` M is INTEGER On entry, M specifies the number of rows of the matrix C. M must be at least zero.``` [in] N ``` N is INTEGER On entry, N specifies the number of columns of the matrix C. N must be at least zero.``` [in] ALPHA ``` ALPHA is REAL On entry, ALPHA specifies the scalar alpha.``` [in] A ``` A is REAL array of DIMENSION ( LDA, ka ), where ka is m when SIDE = 'L' or 'l' and is n otherwise. Before entry with SIDE = 'L' or 'l', the m by m part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading m by m upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading m by m lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Before entry with SIDE = 'R' or 'r', the n by n part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced.``` [in] LDA ``` LDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, n ).``` [in] B ``` B is REAL array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B.``` [in] LDB ``` LDB is INTEGER On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ).``` [in] BETA ``` BETA is REAL On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input.``` [in,out] C ``` C is REAL array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n updated matrix.``` [in] LDC ``` LDC is INTEGER On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ).```
Date:
November 2011
Further Details:
```  Level 3 Blas routine.

-- Written on 8-February-1989.
Jack Dongarra, Argonne National Laboratory.
Iain Duff, AERE Harwell.
Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.```

Definition at line 190 of file ssymm.f.

Here is the call graph for this function:

Here is the caller graph for this function:

 subroutine ssyr2k ( character UPLO, character TRANS, integer N, integer K, real ALPHA, real, dimension(lda,*) A, integer LDA, real, dimension(ldb,*) B, integer LDB, real BETA, real, dimension(ldc,*) C, integer LDC )

SSYR2K

Purpose:
``` SSYR2K  performs one of the symmetric rank 2k operations

C := alpha*A*B**T + alpha*B*A**T + beta*C,

or

C := alpha*A**T*B + alpha*B**T*A + beta*C,

where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
and  A and B  are  n by k  matrices  in the  first  case  and  k by n
matrices in the second case.```
Parameters:
 [in] UPLO ``` UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced.``` [in] TRANS ``` TRANS is CHARACTER*1 On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*B**T + alpha*B*A**T + beta*C. TRANS = 'T' or 't' C := alpha*A**T*B + alpha*B**T*A + beta*C. TRANS = 'C' or 'c' C := alpha*A**T*B + alpha*B**T*A + beta*C.``` [in] N ``` N is INTEGER On entry, N specifies the order of the matrix C. N must be at least zero.``` [in] K ``` K is INTEGER On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrices A and B, and on entry with TRANS = 'T' or 't' or 'C' or 'c', K specifies the number of rows of the matrices A and B. K must be at least zero.``` [in] ALPHA ``` ALPHA is REAL On entry, ALPHA specifies the scalar alpha.``` [in] A ``` A is REAL array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A.``` [in] LDA ``` LDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ).``` [in] B ``` B is REAL array of DIMENSION ( LDB, kb ), where kb is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array B must contain the matrix B, otherwise the leading k by n part of the array B must contain the matrix B.``` [in] LDB ``` LDB is INTEGER On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDB must be at least max( 1, n ), otherwise LDB must be at least max( 1, k ).``` [in] BETA ``` BETA is REAL On entry, BETA specifies the scalar beta.``` [in,out] C ``` C is REAL array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix.``` [in] LDC ``` LDC is INTEGER On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ).```
Date:
November 2011
Further Details:
```  Level 3 Blas routine.

-- Written on 8-February-1989.
Jack Dongarra, Argonne National Laboratory.
Iain Duff, AERE Harwell.
Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.```

Definition at line 193 of file ssyr2k.f.

Here is the call graph for this function:

Here is the caller graph for this function:

 subroutine ssyrk ( character UPLO, character TRANS, integer N, integer K, real ALPHA, real, dimension(lda,*) A, integer LDA, real BETA, real, dimension(ldc,*) C, integer LDC )

SSYRK

Purpose:
``` SSYRK  performs one of the symmetric rank k operations

C := alpha*A*A**T + beta*C,

or

C := alpha*A**T*A + beta*C,

where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
and  A  is an  n by k  matrix in the first case and a  k by n  matrix
in the second case.```
Parameters:
 [in] UPLO ``` UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced.``` [in] TRANS ``` TRANS is CHARACTER*1 On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C. TRANS = 'T' or 't' C := alpha*A**T*A + beta*C. TRANS = 'C' or 'c' C := alpha*A**T*A + beta*C.``` [in] N ``` N is INTEGER On entry, N specifies the order of the matrix C. N must be at least zero.``` [in] K ``` K is INTEGER On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrix A, and on entry with TRANS = 'T' or 't' or 'C' or 'c', K specifies the number of rows of the matrix A. K must be at least zero.``` [in] ALPHA ``` ALPHA is REAL On entry, ALPHA specifies the scalar alpha.``` [in] A ``` A is REAL array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A.``` [in] LDA ``` LDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ).``` [in] BETA ``` BETA is REAL On entry, BETA specifies the scalar beta.``` [in,out] C ``` C is REAL array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix.``` [in] LDC ``` LDC is INTEGER On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ).```
Date:
November 2011
Further Details:
```  Level 3 Blas routine.

-- Written on 8-February-1989.
Jack Dongarra, Argonne National Laboratory.
Iain Duff, AERE Harwell.
Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.```

Definition at line 170 of file ssyrk.f.

Here is the call graph for this function:

Here is the caller graph for this function:

 subroutine strmm ( character SIDE, character UPLO, character TRANSA, character DIAG, integer M, integer N, real ALPHA, real, dimension(lda,*) A, integer LDA, real, dimension(ldb,*) B, integer LDB )

STRMM

Purpose:
``` STRMM  performs one of the matrix-matrix operations

B := alpha*op( A )*B,   or   B := alpha*B*op( A ),

where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
non-unit,  upper or lower triangular matrix  and  op( A )  is one  of

op( A ) = A   or   op( A ) = A**T.```
Parameters:
 [in] SIDE ``` SIDE is CHARACTER*1 On entry, SIDE specifies whether op( A ) multiplies B from the left or right as follows: SIDE = 'L' or 'l' B := alpha*op( A )*B. SIDE = 'R' or 'r' B := alpha*B*op( A ).``` [in] UPLO ``` UPLO is CHARACTER*1 On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix.``` [in] TRANSA ``` TRANSA is CHARACTER*1 On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A**T. TRANSA = 'C' or 'c' op( A ) = A**T.``` [in] DIAG ``` DIAG is CHARACTER*1 On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular.``` [in] M ``` M is INTEGER On entry, M specifies the number of rows of B. M must be at least zero.``` [in] N ``` N is INTEGER On entry, N specifies the number of columns of B. N must be at least zero.``` [in] ALPHA ``` ALPHA is REAL On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry.``` [in] A ``` A is REAL array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity.``` [in] LDA ``` LDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ).``` [in,out] B ``` B is REAL array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B, and on exit is overwritten by the transformed matrix.``` [in] LDB ``` LDB is INTEGER On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ).```
Date:
November 2011
Further Details:
```  Level 3 Blas routine.

-- Written on 8-February-1989.
Jack Dongarra, Argonne National Laboratory.
Iain Duff, AERE Harwell.
Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.```

Definition at line 178 of file strmm.f.

Here is the call graph for this function:

Here is the caller graph for this function:

 subroutine strsm ( character SIDE, character UPLO, character TRANSA, character DIAG, integer M, integer N, real ALPHA, real, dimension(lda,*) A, integer LDA, real, dimension(ldb,*) B, integer LDB )

STRSM

Purpose:
``` STRSM  solves one of the matrix equations

op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,

where alpha is a scalar, X and B are m by n matrices, A is a unit, or
non-unit,  upper or lower triangular matrix  and  op( A )  is one  of

op( A ) = A   or   op( A ) = A**T.

The matrix X is overwritten on B.```
Parameters:
 [in] SIDE ``` SIDE is CHARACTER*1 On entry, SIDE specifies whether op( A ) appears on the left or right of X as follows: SIDE = 'L' or 'l' op( A )*X = alpha*B. SIDE = 'R' or 'r' X*op( A ) = alpha*B.``` [in] UPLO ``` UPLO is CHARACTER*1 On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix.``` [in] TRANSA ``` TRANSA is CHARACTER*1 On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A**T. TRANSA = 'C' or 'c' op( A ) = A**T.``` [in] DIAG ``` DIAG is CHARACTER*1 On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular.``` [in] M ``` M is INTEGER On entry, M specifies the number of rows of B. M must be at least zero.``` [in] N ``` N is INTEGER On entry, N specifies the number of columns of B. N must be at least zero.``` [in] ALPHA ``` ALPHA is REAL On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry.``` [in] A ``` A is REAL array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and k is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity.``` [in] LDA ``` LDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ).``` [in,out] B ``` B is REAL array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the right-hand side matrix B, and on exit is overwritten by the solution matrix X.``` [in] LDB ``` LDB is INTEGER On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ).```
Date:
November 2011
Further Details:
```  Level 3 Blas routine.

-- Written on 8-February-1989.
Jack Dongarra, Argonne National Laboratory.
Iain Duff, AERE Harwell.
Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.```

Definition at line 182 of file strsm.f.

Here is the call graph for this function:

Here is the caller graph for this function: