SUBROUTINE DSYR(UPLO,N,ALPHA,X,INCX,A,LDA) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*) * .. * * Purpose * ======= * * DSYR performs the symmetric rank 1 operation * * A := alpha*x*x' + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n symmetric matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,KX * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSYR ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set the start point in X if the increment is not unity. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in upper triangle. * IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) DO 10 I = 1,J A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = KX DO 30 I = 1,J A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JX = JX + INCX 40 CONTINUE END IF ELSE * * Form A when A is stored in lower triangle. * IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) DO 50 I = J,N A(I,J) = A(I,J) + X(I)*TEMP 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = JX DO 70 I = J,N A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF * RETURN * * End of DSYR . * END