
253

Chapter 11

Transparent Cross-
Platform Access to
Software Services Using
GridSolve and GridRPC

Keith Seymour, Asim YarKhan, and Jack Dongarra

Contents
11.1	 Introduction to RPC and Network-Based Software Services.....................254
11.2	 The GridRPC API...256

11.2.1	Function Handles and Session IDs..257
11.2.2	 Initializing and Finalizing Functions...257
11.2.3	Remote Function Handle Management Functions........................257
11.2.4	GridRPC Call Functions...258
11.2.5	Asynchronous GridRPC Control Functions..................................258
11.2.6	Asynchronous GridRPC Wait Functions.......................................258
11.2.7	Error Reporting Functions...258
11.2.8	Related Work on Network-Enabled Servers...................................259

11.3	 GridSolve: A GridRPC Implementation...259
11.3.1	Overview and Architecture... 260

254  ◾  Cloud Computing and Software Services

Distributed computing can be daunting even for experienced programmers.
Although many projects have been created to facilitate developing distributed
applications, they are often quite complex in themselves. While many scientific
applications could benefit from distributed computing, the complexity of the pro-
gramming models can be a high barrier to entry, especially since many of these
applications are developed by domain scientists without extensive training in soft-
ware development. Thus, we believe that the paramount design consideration of a
distributed computing model should be ease of use. With this in mind, we discuss
GridRPC, which is a model for remote procedure call (RPC) in the context of a
computational grid or other loosely coupled distributed computing environment.
Then we discuss GridSolve, an implementation of the GridRPC model.

11.1  �Introduction to RPC and Network-
Based Software Services

RPC refers to a mechanism that allows invoking a procedure on a remote machine
as if the procedure was implemented locally. The invocation is typically carried out
by means of a communications library and “stub” procedures. The library handles
packing up the user’s data, sending it across the network to the remote machine,

11.3.2	Transparency and Ease of Use...261
11.3.2.1	Stubless Clients..261
11.3.2.2	Scientific Computing Environments................................262
11.3.2.3	Server Administration..262

11.3.3	Scheduling in GridSolve..263
11.3.3.1	Agent Scheduling...263
11.3.3.2	Server Performance Prediction.. 264
11.3.3.3	Scheduling Using Proxies for Computational

Resources..265
11.3.3.4	Client Scheduling... 266
11.3.3.5	Task Graph Scheduling...267

11.4	 RPC Transparency Issues... 268
11.4.1	Parameter Passing... 268
11.4.2	Binding to Servers..269
11.4.3	Exception Handling and Fault Tolerance.......................................269
11.4.4	Data Representation..270
11.4.5	Performance...270
11.4.6	Security...272
11.4.7	Transparency...272

11.5	 Summary..272
References..273

Transparent Cross-Platform Access to Software Services  ◾  255

and unpacking it there. The process of packing the data into a standard format
(especially important for cross-platform scenarios) is referred to as data marshaling.
Once the data has been transferred, the RPC system invokes the user’s procedure
and passes the data to it. From this point, the user’s procedure takes control and
executes until completion. Then the process is reversed to send the results back to
the client machine. The “stub” procedures are used to enable linking the programs
(since the actual procedure does not exist locally to be linked) and to initiate the
RPC process via calls to the RPC library. This standard RPC process is depicted
in Figure 11.1.

One of the earliest implementations of RPC was part of the Cedar project at
Xerox Palo Alto Research Center [1], although the concept had been discussed for
several years prior to the Xerox implementation [2]. Cedar used RPC to enable
distributed computing primarily because of the ease-of-use inherent in the RPC
paradigm. Procedure calls were considered a well-understood mechanism and pro-
vided clean and simple semantics. Around that time, RPC was also being inves-
tigated in the context of distributed operating systems. In a critique of RPC as a
general communications model for arbitrary applications [3], it is argued (among
other things) that since true transparency is impossible, it may be better to design a
partially transparent mechanism. If the system is transparent to the point that the
programmers really do not know if their calls will be executed locally or remotely,
then there could be serious performance implications (e.g., if a sorting routine
called a comparison procedure thousands of times, unaware that it would be exe-
cuted remotely). Most modern RPC-like systems are not aiming for that level
of transparency, but the critique raises issues that are still relevant today. In this

Client application

RPC stub

RPC library

Operating system

RPC stub

RPC library

Operating system

Remote procedure

Client machine Server machine

Network

Figure 11.1  Client–server interaction in standard RPC.

256  ◾  Cloud Computing and Software Services

chapter, we will touch on these and other RPC transparency issues in the context
of a grid-based RPC implementation.

The RPC model has several benefits, but the main concern from the perspec-
tive of high-performance computing is efficiency. If the user’s local machine is
slow, but remote resources are fast, RPC can provide an overall reduction in exe-
cution time, even including the cost of data marshaling. However, traditional
RPC only allows for synchronous calls, that is, once the procedure is invoked, the
client program must sit idle until it completes, even if it had other useful computa-
tions it could be doing. The synchronous model also prevents submitting multiple
parallel RPC requests, which could provide for even better overall performance.
Another limitation of the traditional RPC model is that the mapping of RPC
request to server is very simplistic, often requiring the use of a specific machine.
Intelligent selection of servers could drastically improve the performance. Also the
use of client-side stubs requires language-specific generators for all client language
bindings. Furthermore, consider the implications of this compilation requirement
on interactive computing environments like MATLAB• or Octave, in which
cases, the user cannot be expected to compile stubs just to make use of a remote
procedure.

RPC remains a useful mechanism due to its elegance and simplicity, but the
aforementioned limitations have prompted several extensions to the model, includ-
ing asynchronous calls, task parallel calls, real-time resource scheduling, fault tol-
erance, security, and stubless operation. We will be discussing GridRPC, a recent
specification of an API (application programming interface) for grid-based RPC,
as well as a complete implementation of this API within the GridSolve system.

11.2  The GridRPC API
As mentioned in Section 11.1, the difficulty of using most programming models is a
hindrance to the widespread adoption of grid computing. One particular program-
ming model that has proven to be viable is an RPC mechanism tailored for the
grid, or “GridRPC.” Although at a very high-level view the programming model
provided by GridRPC is that of standard RPC plus asynchronous coarse-grained
parallel tasking, in practice there are a variety of features that will largely hide the
dynamicity, insecurity, and instability of the grid from the programmers. As such,
GridRPC allows not only enabling individual applications to be distributed, but
also can serve as the basis for even higher-level software substrates, such as distrib-
uted, scientific components on the grid.

The GridRPC API [4] represents ongoing work to standardize and implement
a portable and simple RPC mechanism for grid computing. This standardization
effort is being pursued through the Open Grid Forum (previously, Global Grid
Forum) Research Group on Advanced Programming Models [5].

Transparent Cross-Platform Access to Software Services  ◾  257

In this section, we informally describe the GridRPC model and the functions
that comprise the API. A detailed listing of the GridRPC function prototypes can
be found in the GridSolve Users’ Guide [6].

11.2.1  Function Handles and Session IDs
Two fundamental objects in the GridRPC model are function handles and ses-
sion IDs. The function handle represents a mapping from a function name to an
instance of that function on a particular server. The GridRPC API does not dictate
the mechanics of resource discovery, since different underlying GridRPC imple-
mentations may use vastly different protocols. Once a particular function-to-server
mapping has been established by initializing a function handle, all RPC calls using
this function handle will be executed on the server specified in that binding. A
session ID is an identifier representing a particular non-blocking RPC call. The
session ID is used throughout the API to allow users to obtain the status of a previ-
ously submitted non-blocking call, to wait for a call to complete, to cancel a call, or
to check the error code of a call.

11.2.2  Initializing and Finalizing Functions
The initialize and finalize functions are similar to the MPI initialize and finalize
calls. Client GridRPC calls before initialization or after finalization will fail.

◾◾ grpc _ initialize reads the configuration file and initializes the
required modules.
◾◾ grpc _ finalize releases any resources being used by GridRPC.

11.2.3  Remote Function Handle Management Functions
The function handle management group of functions allows creating and destroying
function handles.

◾◾ grpc _ function _ handle _ default creates a new function handle
using the default server. This could be a predetermined server name or it could
be a server that is dynamically chosen by the resource discovery mechanisms
of the underlying GridRPC implementation, such as the GridSolve agent.
◾◾ grpc _ function _ handle _ init creates a new function handle

with a server explicitly specified by the user.
◾◾ grpc _ function _ handle _ destruct releases the memory asso-

ciated with the specified function handle.
◾◾ grpc _ get _ handle returns the function handle corresponding to the

given session ID (that is, corresponding to that particular non-blocking request).

258  ◾  Cloud Computing and Software Services

11.2.4  GridRPC Call Functions
A GridRPC call may be either blocking (synchronous) or non-blocking (asynchro-
nous), and it accepts a variable number of arguments (like printf) depending on
the calling sequence of the particular routine being called.

◾◾ grpc _ call makes a blocking RPC with a variable number of arguments.
◾◾ grpc _ call _ async makes a non-blocking RPC with a variable num-

ber of arguments.

11.2.5  Asynchronous GridRPC Control Functions
The following functions apply only to previously submitted non-blocking requests.

◾◾ grpc _ probe checks whether the asynchronous GridRPC call has
completed.
◾◾ grpc _ probe _ or checks whether any of the previously issued non-

blocking calls in a given set have completed.
◾◾ grpc _ cancel cancels the specified asynchronous GridRPC call.
◾◾ grpc _ cancel _ all cancels all previously issued calls.

11.2.6  Asynchronous GridRPC Wait Functions
The following five functions apply only to previously submitted non-blocking
requests. These calls allow an application to express desired nondeterministic com-
pletion semantics to the underlying system, rather than repeatedly polling on a set
of sessions IDs. (From an implementation standpoint, such information could be
conveyed to the OS scheduler to reduce cycles wasted on polling.)

◾◾ grpc _ wait blocks until the specified non-blocking requests have completed.
◾◾ grpc _ wait _ and blocks until all of the specified non-blocking requests

in a given set have completed.
◾◾ grpc _ wait _ or blocks until any of the specified non-blocking requests

in a given set has completed.
◾◾ grpc _ wait _ all blocks until all previously issued non-blocking

requests have completed.
◾◾ grpc _ wait _ any blocks until any previously issued non-blocking

request has completed.

11.2.7  Error Reporting Functions
Of course it is possible that some GridRPC calls can fail, so we need to provide the
ability to check the error code of previously submitted requests. The following error
reporting functions provide error codes and human-readable error descriptions:

Transparent Cross-Platform Access to Software Services  ◾  259

◾◾ grpc _ get _ error returns the error code associated with a given non-
blocking request.
◾◾ grpc _ error _ string returns the error description string, given a

numeric error code.
◾◾ grpc _ get _ failed _ sessionid returns the session ID of the last

invoked GridRPC call that caused a failure.

11.2.8  Related Work on Network-Enabled Servers
Several Network-Enabled Servers (NES) provide mechanisms for transparent access
to remote resources and software. Ninf-G [7] is an implementation of the GridRPC
API that can function on top of a variety of grid middleware environments, such as
Globus, Condor, and SSH (as of version 5). Ninf-G provides an interface definition
language that allows services to be easily added, and client APIs are provided in C
and Java. Security, scheduling, and resource management are generally left up to
the underlying middleware.

The DIET (Distributed Interactive Engineering Toolbox) project [8] is a
client–agent–server RPC architecture, which uses the GridRPC API as its pri-
mary interface. A CORBA Naming Service handles the resource registration
and lookup, and a hierarchy of agents handle the scheduling of services on the
resources. An API is provided for generating service profiles and adding new ser-
vices, and a C client API exists.

NEOS [9] is a network-enabled problem-solving environment designed as a
generic application service provider (ASP). Any application that can be changed to
read its inputs from files and write its output to a single file can be integrated into
NEOS. The NEOS server acts as an intermediary for all communication. The cli-
ent data files go to the NEOS server, which sends the data to the solver resources,
collects the results, and then returns the results to the client. Clients can use e-mail,
Web, socket-based tools, and CORBA interfaces.

Other projects are related to various aspects of GridSolve. For example, task-
farming-style computation is provided by the Apples Parameter Sweep Template
(APST) project [10], the Condor Master Worker (MW) project [11], and the
Nimrod-G project [12]. Request sequencing and workflow management is handled
by projects like Condor DAGman [13].

11.3  GridSolve: A GridRPC Implementation
GridSolve is a GridRPC-compliant distributed computing system that provides
an efficient and easy-to-use programming model for using remote computational
resources. Remote resources can provide access to specialized hardware or highly
tuned software with the performance and features desired by a computational

260  ◾  Cloud Computing and Software Services

scientist. The basic goal of GridSolve is to provide an easy-to-use, uniform, por-
table, and efficient way to access computational resources over a network.

11.3.1  Overview and Architecture
The GridSolve system is comprised of a set of loosely connected machines. By
loosely connected, we mean that these machines are on the same local, wide, or
global area network, and may be administrated by different institutions and orga-
nizations. Moreover, the GridSolve system is able to support these interactions in a
heterogeneous environment, that is, machines of different architectures, operating
systems, and internal data representations can participate in the system at the same
time.

Figure 11.2 shows the global conceptual picture of the GridSolve system. In
this figure, we can see the three major components of the system: the client, the
agent, and the servers (computational or software resources). GridSolve and systems
like it are often referred to as grid middleware. GridSolve acts as a glue layer that
brings the application or user together with the hardware and/or software needed
to complete useful tasks. At the top tier, the GridSolve client library is linked in

Agent

Monitor
Database

Scheduler

Client

grpc_call (&h, a, b, c, ...);

Request
description

Brokered
decision

Servers Servers

Input
data

Output
results

Status and
workload

Status and
workload

Figure 11.2  GridSolve architecture showing interactions between client, agent,
and servers.

Transparent Cross-Platform Access to Software Services  ◾  261

with the user’s application. The application then makes calls to GridSolve’s API
(GridRPC) for specific services. Through the GridRPC API, GridSolve client-users
gain access to aggregate resources without needing to know anything about distrib-
uted computing or maintaining software libraries. In fact, the user does not even
have to know that remote resources are involved. The GridSolve agent maintains a
database of GridSolve servers along with their capabilities (hardware performance
and allocated software) and dynamic usage statistics. It uses this information to
allocate server resources for client requests. The agent finds servers that will service
requests the quickest, balances the load amongst its servers, and keeps track of
failed ones. The GridSolve server is a daemon process that awaits client requests.
The server can run on single workstations, clusters of workstations, symmetric mul-
tiprocessors, or machines with massively parallel processors. A key component of
the GridSolve server is a source code generator, which parses a GridSolve Interface
Definition Language (gsIDL) file. This gsIDL file contains information that allows
the GridSolve system to create new service modules and incorporate new function-
alities. In essence, the gsIDL defines an interface and wrapper that GridSolve uses
to call functions being incorporated. The (hidden) semantics of a GridSolve request
are as follows:

	 1.	Client contacts the agent with a service request description
	 2.	Agent returns a brokered decision containing a list of capable servers
	 3.	Client contacts the server and sends input data
	 4.	Server receives the data and runs appropriate service
	 5.	Client receives the output results or error status from the server

From the user’s perspective, the call to GridSolve acts very much like the call to
the original function. The GridSolve calls can also be made in an asynchronous
fashion, so that the client can either perform other tasks during the RPC call, or
the client can submit multiple parallel RPC service requests and then probe for
their completion.

11.3.2  Transparency and Ease of Use
In addition to the standard GridRPC API, GridSolve provides a number of fea-
tures that make it easier to use and provide a substantial benefit. These features are
intended to make it easier for the service provider to add services, and easier for the
user to take advantage of these services.

11.3.2.1  Stubless Clients

GridSolve is designed so that the clients do not require client-side stubs to be gener-
ated and compiled in order to call remote procedures. This is in contrast with many
other RPC systems, where a client stub needs to be generated and bound for each

262  ◾  Cloud Computing and Software Services

remote function. Several dynamically reconfigurable languages, such as Java and
Python, allow clients to incorporate new functionality on the fly, but traditional
languages, such as C and Fortran, cannot easily do so. GridSolve accomplishes
this by using generalized marshaling routines on the client and the server. Using
a stubless client in GridSolve enables it to make new server functionality available
to its clients without requiring any changes at the client side. The drawback of this
approach is that type-checking cannot be done at the time of calling the GridSolve
API. However, this stubless approach fits well with the goal of making GridSolve
easy to use. After a client is deployed, no additional changes are required for the
client to access new functions deployed at any server.

11.3.2.2  Scientific Computing Environments

GridSolve has a strong focus on ease of use, since this is still perceived to be a sub-
stantial barrier to the general adoption of distributed and grid computing services.
As such, in addition to C and Fortran client interfaces, GridSolve provides client
bindings to several high-level SCEs (scientific computing environments), such as
MATLAB, Octave, and IDL (Interactive Data Language). In this way, it becomes
possible to combine high-performance distributed grid resources with the flexibil-
ity, familiarity, and productivity of SCEs. The SCE bindings allow the user to make
calls to remote functions in a natural way, and the GridSolve client handles all the
details of converting data from the SCEs’ internal representations to GridSolve
data representations. Then the GridSolve client submits the RPC request to the
GridSolve server, and when the remote reply is received, the client converts it back
to the natural format for the SCE. This smooth integration with SCEs is one of the
most successful features of GridSolve.

11.3.2.3  Server Administration

We have implemented a simple technique for adding arbitrary services to a running
server. First, the new service should be built as a library or object file. Then the user
writes a specification of the service parameters in a gsIDL file. The GridSolve ser-
vice compiler processes the gsIDL and generates a wrapper, which is automatically
compiled and linked with the service library or object files. The services are com-
piled as external executables with interfaces to the server described in a standard
format. The server reexamines its own configuration and installed services periodi-
cally to detect new services. In this way, it becomes aware of the additional services
without recompilation or restarting of the server itself.

Server administrators may specify arbitrary server attributes in a configuration
file. These attributes are used to enable filtering or criteria matching in the selection
of resources. For example, the server could have attributes describing the machine’s
architecture or amount of memory. These attributes are sent to the agent and stored
in its database so that clients can make complex requests (e.g., only give me x86

Transparent Cross-Platform Access to Software Services  ◾  263

servers with more than 2 GB of memory). The agent can very quickly filter service
requests using these attributes to find matches with the appropriate servers.

Server administrators can also add restrictions in the configuration file. This
allows restricting access to the server under certain conditions, such as during peak
times or when there are a certain number of jobs already running.

11.3.3  Scheduling in GridSolve
Scheduling is essential for achieving an efficient and responsive distributed system.
In a distributed, heterogeneous environment like the grid, services can achieve very
different performance depending on many factors, including the network condi-
tions, the server speeds, the temporary load on the server, and the efficiency of
installed software. These factors need to be accounted for when scheduling service
requests onto servers. GridSolve has several alternative scheduling methods avail-
able, and the topic of scheduling remains an active research area within GridSolve.

11.3.3.1  Agent Scheduling

In agent-based scheduling, the agent uses knowledge of the requested service, infor-
mation about the parameters of the service request from the client, and the current
state of the resources to score the possible servers and return the servers in a sorted
order.

When a service is started, the server informs the agent about services that it
provides and the computational complexity of those services. This complexity is
expressed using two integer constants a and b and is evaluated as aNb, where N
is the problem size. At start-up, the server notifies the agent about its computa-
tional speed (approximate MFlops from a simple benchmark), and it continually
updates the agent with information about its workload. When an agent receives
a request for a service with a particular problem size, it uses the service complex-
ity and the server status information to estimate the time to completion on each
server providing that service. It orders the servers in terms of time to completion,
and then returns the list of servers to the client. The client then sends the service
request to the fastest server. If that fails for some reason, the client can resubmit the
service request to the next fastest service, thus providing a basic level of fault toler-
ance. This scheduling heuristic, summarized in Figure 11.3, is known as Minimum

for all servers Si that can provide the desired service
T1(Si) = estimated amount of time for computation on Si
T2(Si) = estimated time for communicating input and output data
T(Si) = T1(Si) + T2(Si) estimated total time using Si
select the server Sm which has the minimum time, where T(Sm) = min T(Si) ∀i

Figure 11.3  Minimum Completion Time algorithm.

264  ◾  Cloud Computing and Software Services

Completion Time. It is simple to implement and works well in many practical cases.
Each service request should be assigned to the server that would complete the ser-
vice in the minimum time, assuming that the currently known loads on the servers
will remain constant during the execution and the communication costs between
the client and all the servers are the same.

However, the Minimum Completion Time heuristic does not try to maximize
the throughput when servers are allowed to run multiple services, and there are
many more requested services than available servers. Since an estimate of the exe-
cution time for the currently executing service is available, this knowledge could
be used to schedule new service requests more intelligently. Some explorations of
alternative scheduling heuristics using historical execution trace information are
described in [14].

11.3.3.2  Server Performance Prediction

The server also plays an important role in helping agent-based scheduling to work
effectively. To efficiently schedule an application requires being able to accurately
predict the duration of the requests that compose the application. However, pre-
dicting the duration of a request is a difficult task. Indeed, the duration might
depend on the data (size and values), on the machine where the application is run,
and on the implementation of the service. Even when the duration of a service does
not depend on the data values (as is the case with many linear algebra kernels),
predicting this duration is hard. In GridSolve, the duration of the task is described
in the gsIDL file using the highest degree of the complexity polynomial, which
gives an approximation of the number of operations the service has to perform
when the inputs are known. The server’s speed (number of operations per second) is
computed by running a simple benchmark when the server is launched. The server
periodically updates its current workload, which is used by the agent to scale down
the server’s speed. Then the estimated duration of the task is computed at runtime
by dividing the estimated number of operations by the current speed of the server.
However, computing the duration of a service based on the complexity polynomial
has several drawbacks.

First, even though the complexity polynomial does not depend on the imple-
mentation, different implementations of the same algorithm do not necessarily
have the same speed. Assume, for instance, that the service is the matrix multiply
routine of the BLAS (Basic Linear Algebra Subroutines). There are a lot of dif-
ferent implementations of the same BLAS API, ranging from reference BLAS (a
non-optimized Fortran version) to automatically tuned libraries, such as ATLAS
[15], and up to specific implementations optimized for a precise version of a cer-
tain CPU, such as the Goto BLAS [16]. The complexity of these implementations
is always the same (O(N 3), for multiplying matrices of order N), but the execution
time might be completely different (for instance, the reference BLAS are about
six times slower than the vendor-optimized version on some CPUs). This effect is

Transparent Cross-Platform Access to Software Services  ◾  265

not taken into account by the standard Minimum Completion Time scheduling
heuristic in GridSolve.

Moreover, obtaining the speed of the machine with a benchmark assumes that
the flop rate of each service is the same as the benchmark. In practice, this is not
true because compute-intensive services achieve higher flop rates than data-intensive
services. In GridSolve, the server’s speed is estimated by running a Linpack bench-
mark, which performs close to the peak flop rate of the processor. This is appro-
priate when the requested service is a compute-intensive one, such as for a linear
algebra kernel. However, if the service is I/O bound (such as database access) or
memory constrained (such as an out-of-core computation), the estimated runtime
is likely to be a huge underestimation of the actual runtime.

Finally, for a given service, a slight change of a parameter may lead to a differ-
ent algorithm and a different time to execute the service. For instance, the matrix–
matrix multiply routine of the BLAS (dgemm) performs C ← αAB + βC, where A,
B, and C are matrices. It is easy to see that the case α = 1 and β = 0 is completely
different from the case α = 0 and β = 1. However, in the current GridSolve model,
since the values of α and β are not related to the size of the data, they do not appear
in the complexity model for the dgemm service.

To solve the problems described above, we propose using a complexity template
model for each service that is instantiated on each server for each different use case
of the service. This template model consists of a polynomial of the parameters of the
problem, and a set of category variables. The polynomial describes the behavior of
the service and has coefficients that will be assigned by GridSolve based on the prior
execution performance history. The use of categories differentiates the separate per-
formance classes, which cannot be modeled as a continuous complexity function.

GridSolve uses a parametric regression system to compute or update the coef-
ficients for the complexity templates at runtime. Each time the server runs the ser-
vice, it updates the coefficients of the model using this run and the previous ones.
A certain number of previous runs are stored on the server’s local disk, which can
be reused if the server has to be stopped and restarted. The server periodically sends
updates of the coefficients to the agent, which evaluates the expressions at runtime
to get an accurate prediction of the execution time of the service. The detailed
complexity parameters that the agent receives from the server allow more accurate
scheduling decisions to be made.

11.3.3.3  Scheduling Using Proxies for Computational Resources

In this server-based approach to scheduling, GridSolve creates server-proxies to del-
egate the scheduling to specialized scheduling and execution services, such as batch
systems, Condor, or LFC (LAPACK for Clusters). The GridSolve agent sees the
server-proxy as a single server entity, even though the server-proxy can represent a
large number of actual resources, and so the proxy handles the scheduling for these
resources rather than the GridSolve agent.

266  ◾  Cloud Computing and Software Services

The GridSolve agent can decide to assign the service request to a server-proxy
based on several factors (e.g., the proxy can register itself with the agent as a virtual
server with a large amount of processing power). The server-proxy will delegate the
request to the specialized service (e.g., Condor), which schedules and executes the
request. The server-proxy then returns the results back to the client.

11.3.3.4  Client Scheduling

Scheduling based purely on computation cost may give poor results because the
communication cost can be a very large factor in the overall RPC cost, especially in
a WAN environment. While choosing the fastest server may minimize the execu-
tion time, if this server is on a distant network, the communication cost can easily
overshadow the savings in the execution time.

To eliminate this weakness, we need an estimate of the network performance
between the client and the servers that could possibly execute the service. This can
be difficult to know ahead of time given the dynamic nature of the system, so we
gather the information empirically at the time the call is made. When the client
gets a list of servers from the agent, it is sorted based only on the estimate of the
computational cost. Normally, the client would simply submit the service request
to the first server on the list, but instead we first measure the bandwidth from the
client to the top few servers using a simple 32 kB ping-pong benchmark. Given the
total data size and the network speed, we compute an estimate of the total commu-
nication and computation RPC time for the servers and reorder the list of servers.

There is some cost associated with performing these measurements, but our
expectation is that the reduction in the total RPC time will compensate for the
overhead. Nevertheless, we try to keep the measurement overhead to a minimum.
The time required to perform the measurement will depend on the number of serv-
ers that have the requested problem, and the bandwidth and latency from the client
to these servers. When the data size is relatively small, the measurements are not
performed, because it would take less time to send the data than it would take to
perform the measurements. Also, since a given service may be available on many
servers, the cost of measuring the network speed to all of them could be prohibitive.
Therefore, the number of servers to be measured is limited to those with the highest
computational performance. The exact number of measurements is configurable
by the client. Once the measurements have been made, they can be cached for a
certain amount of time so that subsequent calls on that client do not have to repeat
the same measurement. The lifetime of the cached measurements is configurable
by the user.

There are many other projects that monitor grid performance (see [17] or [18]
for a review). For example, the Network Weather Service (NWS) [19] is a popular
general system service that can monitor the performance of network bandwidth
and latency (as well as other measures) and provide a statistical forecast for future
performance. However, for the GridSolve system, most of the existing systems are

Transparent Cross-Platform Access to Software Services  ◾  267

inappropriate because clients enter and leave GridSolve dynamically, making it dif-
ficult to measure and retain the communication costs between the clients and the
full set of servers. Moreover, NWS is required to be configured on each end, which
necessitates some expertise that we do not assume. Hence, we have chosen to imple-
ment low-overhead probes as a way of building up the communication cost matrix
between a client and the servers relevant to that client.

11.3.3.5  Task Graph Scheduling

There are two deficiencies associated with the standard RPC-based model when
a computational problem essentially forms a workflow consisting of a sequence of
tasks, among which there exist data dependencies. First, intermediate results are
passed among tasks by first returning to the client, resulting in additional data
transport between the client and the servers, which is pure overhead. Second,
since the execution of each individual task is a separate RPC session, it is diffi-
cult to explore the potential parallelism among tasks where there is no immedi-
ate data dependency. Our previous approach to request sequencing partially solves
the problem of unnecessary data transport by clustering a sequence of tasks based
upon the dependency among them and scheduling them to run collectively. This
approach has two limitations. First, the only mode of execution it supports is on a
single server. Second, it prevents the potential parallelism among tasks from being
explored. Recent work on GridSolve has focused on creating an enhanced request-
sequencing technique that eliminates these limitations and solves the above prob-
lems. The core features of this work include direct inter-server data transfer and the
capability of parallel task execution. The objective of this work is to simplify the
parallel execution of data-driven workflow applications in GridSolve.

In GridSolve request sequencing, a request is defined as a single GridRPC call
to an available GridSolve service. A data-driven workflow application is constructed
as a sequence of requests, among which there may exist data dependencies. For each
workflow application, the sequence of requests is scanned, and the data dependency
between these requests is analyzed. The output of the analysis is a distributed acy-
clic graph (DAG) representing the workflow: tasks within the workflow are repre-
sented as nodes, and data dependencies among tasks are represented as edges. The
workflow scheduler then schedules the DAG to run on the available servers. A set
of tasks can potentially be executed concurrently if their dependencies permit it.

In order to eliminate unnecessary data transport when tasks are run on mul-
tiple servers, the standard RPC-based computational model of GridSolve has been
extended to support direct data transfer among servers. Specifically, in order to
avoid the case that intermediate results are passed among tasks via the client, serv-
ers must be able to pass intermediate results among each other, without the client
being involved.

Recent experiments [20] demonstrated promising benefit from eliminating
unnecessary data transfer and exploiting the parallelism found by automatically

268  ◾  Cloud Computing and Software Services

constructing and analyzing the task graph. The algorithm for workflow scheduling
and execution currently used in GridSolve request sequencing is primitive in that it
does not take into consideration the differences among tasks and does not consider
the overall mutual impact between task clustering and network communication.
We are planning to substitute a more advanced algorithm for this primitive one.
Additionally, we are currently working on providing support for advanced work-
flow patterns, such as conditional branches and loops, which are not supported in
the current implementation.

11.4  RPC Transparency Issues
As we mentioned in the introduction, there are some nontrivial issues to deal with
when aiming for a transparent RPC implementation. In this section, we discuss
some of these issues within the context of the GridRPC specification and our
GridSolve implementation.

11.4.1  Parameter Passing
In local procedure calls, arguments are passed by value or by reference. Pass-by-
value means that the actual value of the argument is passed to the procedure (e.g., if
x has the value 5 and x is passed by value, then the procedure is given the value 5).
In contrast, pass-by-reference means that a pointer is passed to the procedure, which
must be dereferenced to obtain the actual values (e.g., if the value pointed to by x
is stored in memory address 0 × 100, then the procedure is given the value 0 × 100).
Pass-by-reference is useful in a couple of scenarios. First, it allows the procedure to
modify the value of an argument, which is not possible in a pass-by-value situation.
Also, it is more efficient for passing large data structures, like matrices, because only
one address needs to be passed instead of all the values.

In the context of RPC, the problem with pass-by-reference is that the remote
machine is in a different address space, so any pointers from the client machine will
be meaningless. This could be handled by making requests back to the client when
data from the remote pointer is accessed, but that would be very inefficient. The
typical approach (and the one implemented in GridSolve) is to pass a copy of the
data referenced by the pointer and then restore any modifications to the data upon
completion of the RPC. However, in an asynchronous situation, the user needs to
be careful because any modifications to the referenced data made after the call but
before the results from the RPC are restored would be lost.

Another complication with parameter passing in RPC is that of complex or
user-defined data structures. Sun RPC uses XDR (External Data Representation)
[21], which is a standard for describing and encoding arbitrary data. In GridSolve,
we chose to avoid XDR for performance reasons and because almost all of the pro-
cedures we were dealing with used simple data structures like vectors and matrices.

Transparent Cross-Platform Access to Software Services  ◾  269

There are trade-offs between transparency, flexibility, simplicity, and efficiency.
We gave up some transparency and flexibility to gain simplicity and efficiency.

11.4.2  Binding to Servers
RPC binding refers to locating the remote host with the procedure to be invoked
and then finding the correct server process on that host. Traditional RPC required
specifying the remote host name explicitly. When the user is expected to supply the
host names for the remote calls, the veneer of transparency begins to erode. Also,
it becomes more than just a transparency issue when asynchronous RPC is consid-
ered. In this case, the selection of the remote host to satisfy the request can have a
big effect on the performance.

The GridRPC function handle represents a mapping from a service descriptor
(in this case, a simple character string) to the remote server that will be used to
execute the function. This mapping could be specified by the user or determined by
the middleware using simple resource discovery mechanisms or possibly some more
sophisticated scheduling algorithms. In the end, the GridRPC specification leaves
the issue of binding up to the various implementations.

The normal GridRPC calling sequence is to first initialize the handle and bind to
a server using a call to grpc _ function _ handle _ default() followed by
a call to grpc _ call() (or one of its brethren) at some point later. In the case of
the GridSolve implementation, there is a slight problem with performing the schedul-
ing in this scenario. GridSolve relies on having access to the values of the arguments
in grpc _ call() at the time the scheduling is performed, so it can estimate the
execution time and the communication cost of sending the data. However, at the
time grpc _ function _ handle _ default() is called, we do not know
which values will be used in the eventual call, so scheduling is not possible.

To deal with this issue, we allow the user to specify a special host name when
initializing the function handle. The special name signifies to the GridSolve inter-
nals that the function handle binding should be delayed until the first time the
handle is used to make a call. Subsequent calls using that function handle will not
change the binding, so the semantics of successive GridRPC calls is not altered.

In terms of transparency, GridSolve does require the user to know the host
name of the GridSolve agent, which performs the binding and scheduling, but
the user never needs to know any of the server details. This seems like a reasonable
trade-off because of multiple benefits provided by the agent.

11.4.3  Exception Handling and Fault Tolerance
Whenever communication with remote machines is involved, there is a possibil-
ity for new and subtle errors to appear. This can destroy the sense of transparency
because now the user must deal with many new failure scenarios, which would
never happen with a local procedure call. The GridRPC specification largely avoids

270  ◾  Cloud Computing and Software Services

attempting to maintain this kind of procedure-level transparency. The GridRPC
calls have their own return values and error codes that must be dealt with appropri-
ately. Any errors from the remote procedure itself must be passed back as an output
argument of the RPC.

Despite the lack of transparency in exception handling, the GridRPC
Specification leaves open the possibility of implementing transparent fault tol-
erance. In GridSolve, if a call fails, the system will automatically find another
server to which to resubmit the job. This is completely transparent, so the user
never knows that there were failures in the system. This brings up several issues
of how to detect failures. There are many failure scenarios, and the handling of
each one is a bit different, but these implementation details do not really affect the
user’s perception of RPC transparency. The issue of fault tolerance also affects the
issue of binding, because when errors occur, the final server handling the request
might be different from the one originally selected. GridSolve allows the user to
enable or disable the fault-tolerant mode in order to match the desired GridRPC
semantics.

11.4.4  Data Representation
The internal representation of data is an important issue in RPC because the local
and remote machines may have different word lengths, floating-point formats,
and byte orderings. If the user has to think about their data representation or
data structures, the illusion of transparency is lost. We mentioned XDR earlier
as a solution to the issue of passing complex data structures, but XDR also han-
dles conversion of primitive data types between architectures by using a common
intermediate representation. The GridRPC specification says nothing about data
conversion, so it is left up to the implementors to decide. In GridSolve, we imple-
mented a receiver makes right protocol, which allows the client to send data in its
native format, which the receiver then converts to its own native format if needed.
This avoids having to do two separate conversions (each end converting between
native and common representations) as well as avoiding making an extra copy of
the data on the sending side. GridSolve is still limited in its support for complex
data structures, but we feel the increased efficiency in the common cases is worth
making the trade-off.

11.4.5  Performance
While we make great effort to ensure good performance in GridSolve, the fact
remains that extra communication overhead is inherent in any RPC. It was men-
tioned in [3] that if you had a truly transparent RPC for arbitrary applications,
serious performance degradation could be inadvertently introduced. Of course,
GridRPC specifies a different API for remote calls, so users will be aware of which
calls are local and which are remote. Nevertheless, to achieve the best performance

Transparent Cross-Platform Access to Software Services  ◾  271

in an RPC-based application, the developers should carefully consider the ratio of
computation time to communication time (since processor power has been increas-
ing faster than communication speed, this issue gets more serious every year). Take
matrix multiplication as an example. We compute C ← αAB + βC, where A, B, and
C are matrices. For the sake of simplicity, assume that they are all square matrices
of size N × N. The communication costs will be on the order of

	

C N

C N

input

output

= × ×

= ×

3 elementsize
bandwidth

elementsize
band

2

2

wwidth

C C Ctotal input output= +

where
“elementsize” is the size of each matrix element in bytes
“bandwidth” is the number of bytes per second for the network

Assuming a local network bandwidth of 11 MB/s and an element size of 8 bytes,
the communication cost for N = 3000 is around 25 s. The computational costs will
be on the order of

	
P N Mp= 





2
3

3

where Mp is the performance of the machine in floating-point operations per sec-
ond. At N = 3000 and local machine performance of Mp = 800 Mflop/s, the local
computation cost would be roughly 22.5 s. So, it costs more to send the data (not
counting the remote execution time) than it would to just do the computation
locally. Since the computation cost is growing faster than the communication cost,
there will eventually be a crossover point where it makes sense to do the RPC, but
it depends on the performance of the remote machine relative to the local machine
as well as the network speed (WANs are often much worse than our 11 MB/s LAN
example).

While this example might be discouraging, there are still many favorable sce-
narios for RPC, especially when taking into account task parallelism. One example
is in parameter sweep problems, where the data being distributed is relatively small,
and many servers can be used asynchronously and simultaneously to evaluate dif-
ferent input data with the output being collated in some way. Tasks that are suited
to RPC computation include Evolutionary Algorithms (genetic algorithms, etc.),
Monte Carlo–style algorithms, and optimization algorithms.

272  ◾  Cloud Computing and Software Services

11.4.6  Security
Unlike with local procedures, when executing a remote procedure, the data is
exposed on the network and therefore susceptible to snooping. Security is another
area that is not addressed by the GridRPC specification, but the various implemen-
tations choose their own strategies. We have not implemented any data encryption
methods in GridSolve. It is an important issue, but most of our users are running
the entire GridSolve infrastructure on their local networks (e.g., behind firewalls).
Because of this, there has not been a huge demand for encryption in GridSolve, but
it should be straightforward to add since we have already implemented a transpar-
ent data compression module, and encryption could be added to this module at the
data transport level.

11.4.7  Transparency
Trying to achieve total transparency (even if it is possible) would result in unex-
pected behavior and unacceptable performance degradation. As it was mentioned
earlier, from a design standpoint, total transparency might not be the ideal any-
way. We have attempted to design a system that is transparent in the sense of
shielding users from unnecessary details and allowing for relatively painless con-
version of code to a distributed implementation. The user still retains control
over their application in deciding which functions are appropriate for remote pro-
cessing. But the user does not need to know which server will be used, how the
data will be converted, whether the job was resubmitted to another server due
to failures, etc. This level of partial transparency allows the GridSolve system to
provide better overall performance for the users while leaving the user in control
of their application.

11.5  Summary
Using distributed grid resources in a simple and effective manner is difficult,
though there are multiple programming models that are attempting to meet this
challenge. The GridRPC API is a simple and portable programming model pro-
viding a standardized mechanism for accessing grid resources. GridSolve provides
an implementation of GridRPC and adds a substantial list of features that are
designed to make access to grid resources transparent and easier to accomplish.
Client bindings for commonly used SCEs (e.g., MATLAB, Octave, and IDL) make
it easy for a computational scientist to use grid resources from within their preferred
tools. Transparent scheduling via the GridSolve agent relieves the user from having
to know the details of the servers and service providers. Service-level fault toler-
ance provides a simple and usable mode for failure recovery. Task graph scheduling
allows the composition of sequences of tasks into an inferred workflow, without

Transparent Cross-Platform Access to Software Services  ◾  273

requiring additional input from the user. Using all these techniques and more,
GridSolve has been working to make the grid easier to use, and further research on
this goal continues.

References
	 1.	 A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions

on Computer Systems, 2(1): 39–59, 1984.
	 2.	 J. E. White. A high-level framework for network-based resource sharing. In Proceedings

of the National Computer Conference, New York, June 1976.
	 3.	 A. S. Tanenbaum and R. van Renesse. A critique of the remote procedure call Paradigm.

In Proceedings of the EUTECO 88 Conference, Vienna, Austria, pp. 775–783, 1988.
	 4.	 K. Seymour, N. Hakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova. Overview

of GridRPC: A remote procedure call API for grid computing. In M. Parashar, editor,
GRID 2002, Baltimore, MD, pp. 274–278, 2002.

	 5.	 Global Grid Forum Research Group on Programming Models. http://www.gridforum.
org/7_APM/APS.htm

	 6.	 J. Dongarra, Y. Li, K. Seymour, and A. YarKhan. Users’ guide to GridSolve V0.19.
Technical Report, Innovative Computing Laboratory. University of Tennessee,
Knoxville, TN, June 2008.

	 7.	 Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G: A refer-
ence implementation of RPC-based programming middleware for grid computing.
Journal of Grid Computing, 1(1):41–51, 2003.

	 8.	 E. Caron, F. Desprez, F. Lombard, J.-M. Nicod, L. Philippe, M. Quinson, and F.
Suter. A scalable approach to network enabled servers (research note). Lecture Notes
in Computer Science, 2400/2002, pp. 239–248, 2002. Springer, Berlin/Heidelberg,
Germany.

	 9.	 E. Dolan, R. Fourer, J. J. Moré, and T. S. Munson. The NEOS server for optimiza-
tion: Version 4 and beyond. Technical Report ANL/MCS-P947-0202, Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, IL, February 2002.

	 10.	 H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS parameter sweep
template: User-level middleware for the grid. In Proceedings of Supercomputing ’2000
(CD-ROM  ), Dallas, TX, November 2000, p. 60. IEEE Computer Society, Washington,
DC. ISBN 0-7803-9802-5.

	 11.	 J. Linderoth, S. Kulkarni, J-P. Goux, and M. Yoder. An enabling framework for
master-worker applications on the computational grid. In Proceedings of the Ninth
IEEE Symposium on High Performance Distributed Computing (HPDC9), Pittsburgh,
PA, pp. 43–50, August 2000.

	 12.	 D. Abramson, R. Buyya, and J. Giddy. A computational economy for grid computing
and its implementation in the Nimrod-G resource broker. Future Generation Computer
Systems, 18(8):1061–1074, October 2002.

	 13.	 J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A computa-
tion management agent for multi-institutional grids. Cluster Computing, 5:237–246,
2002.

	 14.	 Y. Caniou and E. Jeannot. Experimental study of multi-criteria scheduling heuristics
for GridRPC systems. In ACM-IFIP Euro-Par 2004, Pisa, Italy, September 2004.

http://www.gridforum.org/
http://www.gridforum.org/

274  ◾  Cloud Computing and Software Services

	 15.	 R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software (ATLAS).
In ACM, editor, SC’98: High Performance Networking and Computing: Proceedings of
the 1998 ACM/IEEE SC98 Conference: Orange County Convention Center, November
7–13, 1998, Orlando, FL, 1998. ACM Press and IEEE Computer Society Press, New
York and Silver Spring, MD. Best Paper Award for Systems.

	 16.	 K. Goto and R. van de Geijn. High-performance implementation of the level-3 BLAS.
Technical Report CS-TR-06-23, Department of Computer Sciences, The University
of Texas at Austin, Austin, TX, May 5, 2006.

	 17.	 D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante. Characterizing and predicting TCP
throughput on the wide area network. In 25th International Conference on Distributed
Computing Systems (ICDCS 2005), June 6–10, 2005, Columbus, OH, pp. 414–424,
2005.

	 18.	 S. Zanikolas and R. Sakellariou. A taxonomy of grid monitoring systems. Future
Generation Computer Systems, 21(1): 163–188, January 2005.

	 19.	 R. Wolski, N. T. Spring, and J. Hayes. The network weather service: A distributed
resource performance forecasting service for metacomputing. Future Generation
Computer Systems, 15(5–6): 757–768, 1999.

	 20.	 Y. Li, J. Dongarra, K. Seymour, and A. YarKhan. Request sequencing: Enabling
Workflow for efficient problem solving in GridSolve. In International Conference on
Grid and Cooperative Computing (GCC 2008), Shenzhen, China, October 2008.

	 21.	 Sun Microsystems Inc. XDR: External data representation standard. RFC 1014, Sun
Microsystems, Inc., June 1987.

	11. Transparent Cross-Platform Access to Software Services Using GridSolve and GridRPC
	11.1 Introduction to RPC and Network-Based Software Services
	11.2 The GridRPC API
	11.2.1 Function Handles and Session IDs
	11.2.2 Initializing and Finalizing Functions
	11.2.3 Remote Function Handle Management Functions
	11.2.4 GridRPC Call Functions
	11.2.5 Asynchronous GridRPC Control Functions
	11.2.6 Asynchronous GridRPC Wait Functions
	11.2.7 Error Reporting Functions
	11.2.8 Related Work on Network-Enabled Servers

	11.3 GridSolve: A GridRPC Implementation
	11.3.1 Overview and Architecture
	11.3.2 Transparency and Ease of Use
	11.3.3 Scheduling in GridSolve

	11.4 RPC Transparency Issues
	11.4.1 Parameter Passing
	11.4.2 Binding to Server
	11.4.3 Exception Handling and Fault Tolerance
	11.4.4 Data Representation
	11.4.5 Performance
	11.4.6 Security
	11.4.7 Transparency

	11.5 Summary
	References

