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Distributed computing can be daunting even for experienced programmers. 
Although many projects have been created to facilitate developing distributed 
applications, they are often quite complex in themselves. While many scientific 
applications could benefit from distributed computing, the complexity of the pro-
gramming models can be a high barrier to entry, especially since many of these 
applications are developed by domain scientists without extensive training in soft-
ware development. Thus, we believe that the paramount design consideration of a 
distributed computing model should be ease of use. With this in mind, we discuss 
GridRPC, which is a model for remote procedure call (RPC) in the context of a 
computational grid or other loosely coupled distributed computing environment. 
Then we discuss GridSolve, an implementation of the GridRPC model.

11.1  �Introduction to RPC and Network-
Based Software Services

RPC refers to a mechanism that allows invoking a procedure on a remote machine 
as if the procedure was implemented locally. The invocation is typically carried out 
by means of a communications library and “stub” procedures. The library handles 
packing up the user’s data, sending it across the network to the remote machine, 
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and unpacking it there. The process of packing the data into a standard format 
(especially important for cross-platform scenarios) is referred to as data marshaling. 
Once the data has been transferred, the RPC system invokes the user’s procedure 
and passes the data to it. From this point, the user’s procedure takes control and 
executes until completion. Then the process is reversed to send the results back to 
the client machine. The “stub” procedures are used to enable linking the programs 
(since the actual procedure does not exist locally to be linked) and to initiate the 
RPC process via calls to the RPC library. This standard RPC process is depicted 
in Figure 11.1.

One of the earliest implementations of RPC was part of the Cedar project at 
Xerox Palo Alto Research Center [1], although the concept had been discussed for 
several years prior to the Xerox implementation [2]. Cedar used RPC to enable 
distributed computing primarily because of the ease-of-use inherent in the RPC 
paradigm. Procedure calls were considered a well-understood mechanism and pro-
vided clean and simple semantics. Around that time, RPC was also being inves-
tigated in the context of distributed operating systems. In a critique of RPC as a 
general communications model for arbitrary applications [3], it is argued (among 
other things) that since true transparency is impossible, it may be better to design a 
partially transparent mechanism. If the system is transparent to the point that the 
programmers really do not know if their calls will be executed locally or remotely, 
then there could be serious performance implications (e.g., if a sorting routine 
called a comparison procedure thousands of times, unaware that it would be exe-
cuted remotely). Most modern RPC-like systems are not aiming for that level 
of transparency, but the critique raises issues that are still relevant today. In this 
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Figure 11.1  Client–server interaction in standard RPC.
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chapter, we will touch on these and other RPC transparency issues in the context 
of a grid-based RPC implementation.

The RPC model has several benefits, but the main concern from the perspec-
tive of high-performance computing is efficiency. If the user’s local machine is 
slow, but remote resources are fast, RPC can provide an overall reduction in exe-
cution time, even including the cost of data marshaling. However, traditional 
RPC only allows for synchronous calls, that is, once the procedure is invoked, the 
client program must sit idle until it completes, even if it had other useful computa-
tions it could be doing. The synchronous model also prevents submitting multiple 
parallel RPC requests, which could provide for even better overall performance. 
Another limitation of the traditional RPC model is that the mapping of RPC 
request to server is very simplistic, often requiring the use of a specific machine. 
Intelligent selection of servers could drastically improve the performance. Also the 
use of client-side stubs requires language-specific generators for all client language 
bindings. Furthermore, consider the implications of this compilation requirement 
on interactive computing environments like MATLAB• or Octave, in which 
cases, the user cannot be expected to compile stubs just to make use of a remote 
procedure.

RPC remains a useful mechanism due to its elegance and simplicity, but the 
aforementioned limitations have prompted several extensions to the model, includ-
ing asynchronous calls, task parallel calls, real-time resource scheduling, fault tol-
erance, security, and stubless operation. We will be discussing GridRPC, a recent 
specification of an API (application programming interface) for grid-based RPC, 
as well as a complete implementation of this API within the GridSolve system.

11.2  The GridRPC API
As mentioned in Section 11.1, the difficulty of using most programming models is a 
hindrance to the widespread adoption of grid computing. One particular program-
ming model that has proven to be viable is an RPC mechanism tailored for the 
grid, or “GridRPC.” Although at a very high-level view the programming model 
provided by GridRPC is that of standard RPC plus asynchronous coarse-grained 
parallel tasking, in practice there are a variety of features that will largely hide the 
dynamicity, insecurity, and instability of the grid from the programmers. As such, 
GridRPC allows not only enabling individual applications to be distributed, but 
also can serve as the basis for even higher-level software substrates, such as distrib-
uted, scientific components on the grid.

The GridRPC API [4] represents ongoing work to standardize and implement 
a portable and simple RPC mechanism for grid computing. This standardization 
effort is being pursued through the Open Grid Forum (previously, Global Grid 
Forum) Research Group on Advanced Programming Models [5].
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In this section, we informally describe the GridRPC model and the functions 
that comprise the API. A detailed listing of the GridRPC function prototypes can 
be found in the GridSolve Users’ Guide [6].

11.2.1  Function Handles and Session IDs
Two fundamental objects in the GridRPC model are function handles and ses-
sion IDs. The function handle represents a mapping from a function name to an 
instance of that function on a particular server. The GridRPC API does not dictate 
the mechanics of resource discovery, since different underlying GridRPC imple-
mentations may use vastly different protocols. Once a particular function-to-server 
mapping has been established by initializing a function handle, all RPC calls using 
this function handle will be executed on the server specified in that binding. A 
session ID is an identifier representing a particular non-blocking RPC call. The 
session ID is used throughout the API to allow users to obtain the status of a previ-
ously submitted non-blocking call, to wait for a call to complete, to cancel a call, or 
to check the error code of a call.

11.2.2  Initializing and Finalizing Functions
The initialize and finalize functions are similar to the MPI initialize and finalize 
calls. Client GridRPC calls before initialization or after finalization will fail.

◾◾ grpc _ initialize reads the configuration file and initializes the 
required modules.
◾◾ grpc _ finalize releases any resources being used by GridRPC.

11.2.3  Remote Function Handle Management Functions
The function handle management group of functions allows creating and destroying 
function handles.

◾◾ grpc _ function _ handle _ default creates a new function handle 
using the default server. This could be a predetermined server name or it could 
be a server that is dynamically chosen by the resource discovery mechanisms 
of the underlying GridRPC implementation, such as the GridSolve agent.
◾◾ grpc _ function _ handle _ init creates a new function handle 

with a server explicitly specified by the user.
◾◾ grpc _ function _ handle _ destruct releases the memory asso-

ciated with the specified function handle.
◾◾ grpc _ get _ handle returns the function handle corresponding to the 

given session ID (that is, corresponding to that particular non-blocking request).
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11.2.4  GridRPC Call Functions
A GridRPC call may be either blocking (synchronous) or non-blocking (asynchro-
nous), and it accepts a variable number of arguments (like printf) depending on 
the calling sequence of the particular routine being called.

◾◾ grpc _ call makes a blocking RPC with a variable number of arguments.
◾◾ grpc _ call _ async makes a non-blocking RPC with a variable num-

ber of arguments.

11.2.5  Asynchronous GridRPC Control Functions
The following functions apply only to previously submitted non-blocking requests.

◾◾ grpc _ probe checks whether the asynchronous GridRPC call has 
completed.
◾◾ grpc _ probe _ or checks whether any of the previously issued non-

blocking calls in a given set have completed.
◾◾ grpc _ cancel cancels the specified asynchronous GridRPC call.
◾◾ grpc _ cancel _ all cancels all previously issued calls.

11.2.6  Asynchronous GridRPC Wait Functions
The following five functions apply only to previously submitted non-blocking 
requests. These calls allow an application to express desired nondeterministic com-
pletion semantics to the underlying system, rather than repeatedly polling on a set 
of sessions IDs. (From an implementation standpoint, such information could be 
conveyed to the OS scheduler to reduce cycles wasted on polling.)

◾◾ grpc _ wait blocks until the specified non-blocking requests have completed.
◾◾ grpc _ wait _ and blocks until all of the specified non-blocking requests 

in a given set have completed.
◾◾ grpc _ wait _ or blocks until any of the specified non-blocking requests 

in a given set has completed.
◾◾ grpc _ wait _ all blocks until all previously issued non-blocking 

requests have completed.
◾◾ grpc _ wait _ any blocks until any previously issued non-blocking 

request has completed.

11.2.7  Error Reporting Functions
Of course it is possible that some GridRPC calls can fail, so we need to provide the 
ability to check the error code of previously submitted requests. The following error 
reporting functions provide error codes and human-readable error descriptions:
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◾◾ grpc _ get _ error returns the error code associated with a given non-
blocking request.
◾◾ grpc _ error _ string returns the error description string, given a 

numeric error code.
◾◾ grpc _ get _ failed _ sessionid returns the session ID of the last 

invoked GridRPC call that caused a failure.

11.2.8  Related Work on Network-Enabled Servers
Several Network-Enabled Servers (NES) provide mechanisms for transparent access 
to remote resources and software. Ninf-G [7] is an implementation of the GridRPC 
API that can function on top of a variety of grid middleware environments, such as 
Globus, Condor, and SSH (as of version 5). Ninf-G provides an interface definition 
language that allows services to be easily added, and client APIs are provided in C 
and Java. Security, scheduling, and resource management are generally left up to 
the underlying middleware.

The DIET (Distributed Interactive Engineering Toolbox) project [8] is a 
client–agent–server RPC architecture, which uses the GridRPC API as its pri-
mary interface. A CORBA Naming Service handles the resource registration 
and lookup, and a hierarchy of agents handle the scheduling of services on the 
resources. An API is provided for generating service profiles and adding new ser-
vices, and a C client API exists.

NEOS [9] is a network-enabled problem-solving environment designed as a 
generic application service provider (ASP). Any application that can be changed to 
read its inputs from files and write its output to a single file can be integrated into 
NEOS. The NEOS server acts as an intermediary for all communication. The cli-
ent data files go to the NEOS server, which sends the data to the solver resources, 
collects the results, and then returns the results to the client. Clients can use e-mail, 
Web, socket-based tools, and CORBA interfaces.

Other projects are related to various aspects of GridSolve. For example, task-
farming-style computation is provided by the Apples Parameter Sweep Template 
(APST) project [10], the Condor Master Worker (MW) project [11], and the 
Nimrod-G project [12]. Request sequencing and workflow management is handled 
by projects like Condor DAGman [13].

11.3  GridSolve: A GridRPC Implementation
GridSolve is a GridRPC-compliant distributed computing system that provides 
an efficient and easy-to-use programming model for using remote computational 
resources. Remote resources can provide access to specialized hardware or highly 
tuned software with the performance and features desired by a computational 
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scientist. The basic goal of GridSolve is to provide an easy-to-use, uniform, por-
table, and efficient way to access computational resources over a network.

11.3.1  Overview and Architecture
The GridSolve system is comprised of a set of loosely connected machines. By 
loosely connected, we mean that these machines are on the same local, wide, or 
global area network, and may be administrated by different institutions and orga-
nizations. Moreover, the GridSolve system is able to support these interactions in a 
heterogeneous environment, that is, machines of different architectures, operating 
systems, and internal data representations can participate in the system at the same 
time.

Figure 11.2 shows the global conceptual picture of the GridSolve system. In 
this figure, we can see the three major components of the system: the client, the 
agent, and the servers (computational or software resources). GridSolve and systems 
like it are often referred to as grid middleware. GridSolve acts as a glue layer that 
brings the application or user together with the hardware and/or software needed 
to complete useful tasks. At the top tier, the GridSolve client library is linked in 
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Figure 11.2  GridSolve architecture showing interactions between client, agent, 
and servers.
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with the user’s application. The application then makes calls to GridSolve’s API 
(GridRPC) for specific services. Through the GridRPC API, GridSolve client-users 
gain access to aggregate resources without needing to know anything about distrib-
uted computing or maintaining software libraries. In fact, the user does not even 
have to know that remote resources are involved. The GridSolve agent maintains a 
database of GridSolve servers along with their capabilities (hardware performance 
and allocated software) and dynamic usage statistics. It uses this information to 
allocate server resources for client requests. The agent finds servers that will service 
requests the quickest, balances the load amongst its servers, and keeps track of 
failed ones. The GridSolve server is a daemon process that awaits client requests. 
The server can run on single workstations, clusters of workstations, symmetric mul-
tiprocessors, or machines with massively parallel processors. A key component of 
the GridSolve server is a source code generator, which parses a GridSolve Interface 
Definition Language (gsIDL) file. This gsIDL file contains information that allows 
the GridSolve system to create new service modules and incorporate new function-
alities. In essence, the gsIDL defines an interface and wrapper that GridSolve uses 
to call functions being incorporated. The (hidden) semantics of a GridSolve request 
are as follows:

	 1.	Client contacts the agent with a service request description
	 2.	Agent returns a brokered decision containing a list of capable servers
	 3.	Client contacts the server and sends input data
	 4.	Server receives the data and runs appropriate service
	 5.	Client receives the output results or error status from the server

From the user’s perspective, the call to GridSolve acts very much like the call to 
the original function. The GridSolve calls can also be made in an asynchronous 
fashion, so that the client can either perform other tasks during the RPC call, or 
the client can submit multiple parallel RPC service requests and then probe for 
their completion.

11.3.2  Transparency and Ease of Use
In addition to the standard GridRPC API, GridSolve provides a number of fea-
tures that make it easier to use and provide a substantial benefit. These features are 
intended to make it easier for the service provider to add services, and easier for the 
user to take advantage of these services.

11.3.2.1  Stubless Clients

GridSolve is designed so that the clients do not require client-side stubs to be gener-
ated and compiled in order to call remote procedures. This is in contrast with many 
other RPC systems, where a client stub needs to be generated and bound for each 
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remote function. Several dynamically reconfigurable languages, such as Java and 
Python, allow clients to incorporate new functionality on the fly, but traditional 
languages, such as C and Fortran, cannot easily do so. GridSolve accomplishes 
this by using generalized marshaling routines on the client and the server. Using 
a stubless client in GridSolve enables it to make new server functionality available 
to its clients without requiring any changes at the client side. The drawback of this 
approach is that type-checking cannot be done at the time of calling the GridSolve 
API. However, this stubless approach fits well with the goal of making GridSolve 
easy to use. After a client is deployed, no additional changes are required for the 
client to access new functions deployed at any server.

11.3.2.2  Scientific Computing Environments

GridSolve has a strong focus on ease of use, since this is still perceived to be a sub-
stantial barrier to the general adoption of distributed and grid computing services. 
As such, in addition to C and Fortran client interfaces, GridSolve provides client 
bindings to several high-level SCEs (scientific computing environments), such as 
MATLAB, Octave, and IDL (Interactive Data Language). In this way, it becomes 
possible to combine high-performance distributed grid resources with the flexibil-
ity, familiarity, and productivity of SCEs. The SCE bindings allow the user to make 
calls to remote functions in a natural way, and the GridSolve client handles all the 
details of converting data from the SCEs’ internal representations to GridSolve 
data representations. Then the GridSolve client submits the RPC request to the 
GridSolve server, and when the remote reply is received, the client converts it back 
to the natural format for the SCE. This smooth integration with SCEs is one of the 
most successful features of GridSolve.

11.3.2.3  Server Administration

We have implemented a simple technique for adding arbitrary services to a running 
server. First, the new service should be built as a library or object file. Then the user 
writes a specification of the service parameters in a gsIDL file. The GridSolve ser-
vice compiler processes the gsIDL and generates a wrapper, which is automatically 
compiled and linked with the service library or object files. The services are com-
piled as external executables with interfaces to the server described in a standard 
format. The server reexamines its own configuration and installed services periodi-
cally to detect new services. In this way, it becomes aware of the additional services 
without recompilation or restarting of the server itself.

Server administrators may specify arbitrary server attributes in a configuration 
file. These attributes are used to enable filtering or criteria matching in the selection 
of resources. For example, the server could have attributes describing the machine’s 
architecture or amount of memory. These attributes are sent to the agent and stored 
in its database so that clients can make complex requests (e.g., only give me x86 
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servers with more than 2 GB of memory). The agent can very quickly filter service 
requests using these attributes to find matches with the appropriate servers.

Server administrators can also add restrictions in the configuration file. This 
allows restricting access to the server under certain conditions, such as during peak 
times or when there are a certain number of jobs already running.

11.3.3  Scheduling in GridSolve
Scheduling is essential for achieving an efficient and responsive distributed system. 
In a distributed, heterogeneous environment like the grid, services can achieve very 
different performance depending on many factors, including the network condi-
tions, the server speeds, the temporary load on the server, and the efficiency of 
installed software. These factors need to be accounted for when scheduling service 
requests onto servers. GridSolve has several alternative scheduling methods avail-
able, and the topic of scheduling remains an active research area within GridSolve.

11.3.3.1  Agent Scheduling

In agent-based scheduling, the agent uses knowledge of the requested service, infor-
mation about the parameters of the service request from the client, and the current 
state of the resources to score the possible servers and return the servers in a sorted 
order.

When a service is started, the server informs the agent about services that it 
provides and the computational complexity of those services. This complexity is 
expressed using two integer constants a and b and is evaluated as aNb, where N 
is the problem size. At start-up, the server notifies the agent about its computa-
tional speed (approximate MFlops from a simple benchmark), and it continually 
updates the agent with information about its workload. When an agent receives 
a request for a service with a particular problem size, it uses the service complex-
ity and the server status information to estimate the time to completion on each 
server providing that service. It orders the servers in terms of time to completion, 
and then returns the list of servers to the client. The client then sends the service 
request to the fastest server. If that fails for some reason, the client can resubmit the 
service request to the next fastest service, thus providing a basic level of fault toler-
ance. This scheduling heuristic, summarized in Figure 11.3, is known as Minimum 

for all servers Si that can provide the desired service
T1(Si) = estimated amount of time for computation on Si
T2(Si) = estimated time for communicating input and output data
T(Si) = T1(Si) + T2(Si) estimated total time using Si
select the server Sm which has the minimum time, where T(Sm) = min T(Si) ∀i

Figure 11.3  Minimum Completion Time algorithm.
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Completion Time. It is simple to implement and works well in many practical cases. 
Each service request should be assigned to the server that would complete the ser-
vice in the minimum time, assuming that the currently known loads on the servers 
will remain constant during the execution and the communication costs between 
the client and all the servers are the same.

However, the Minimum Completion Time heuristic does not try to maximize 
the throughput when servers are allowed to run multiple services, and there are 
many more requested services than available servers. Since an estimate of the exe-
cution time for the currently executing service is available, this knowledge could 
be used to schedule new service requests more intelligently. Some explorations of 
alternative scheduling heuristics using historical execution trace information are 
described in [14].

11.3.3.2  Server Performance Prediction

The server also plays an important role in helping agent-based scheduling to work 
effectively. To efficiently schedule an application requires being able to accurately 
predict the duration of the requests that compose the application. However, pre-
dicting the duration of a request is a difficult task. Indeed, the duration might 
depend on the data (size and values), on the machine where the application is run, 
and on the implementation of the service. Even when the duration of a service does 
not depend on the data values (as is the case with many linear algebra kernels), 
predicting this duration is hard. In GridSolve, the duration of the task is described 
in the gsIDL file using the highest degree of the complexity polynomial, which 
gives an approximation of the number of operations the service has to perform 
when the inputs are known. The server’s speed (number of operations per second) is 
computed by running a simple benchmark when the server is launched. The server 
periodically updates its current workload, which is used by the agent to scale down 
the server’s speed. Then the estimated duration of the task is computed at runtime 
by dividing the estimated number of operations by the current speed of the server. 
However, computing the duration of a service based on the complexity polynomial 
has several drawbacks.

First, even though the complexity polynomial does not depend on the imple-
mentation, different implementations of the same algorithm do not necessarily 
have the same speed. Assume, for instance, that the service is the matrix multiply 
routine of the BLAS (Basic Linear Algebra Subroutines). There are a lot of dif-
ferent implementations of the same BLAS API, ranging from reference BLAS (a 
non-optimized Fortran version) to automatically tuned libraries, such as ATLAS 
[15], and up to specific implementations optimized for a precise version of a cer-
tain CPU, such as the Goto BLAS [16]. The complexity of these implementations 
is always the same (O(N 3), for multiplying matrices of order N ), but the execution 
time might be completely different (for instance, the reference BLAS are about 
six times slower than the vendor-optimized version on some CPUs). This effect is 
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not taken into account by the standard Minimum Completion Time scheduling 
heuristic in GridSolve.

Moreover, obtaining the speed of the machine with a benchmark assumes that 
the flop rate of each service is the same as the benchmark. In practice, this is not 
true because compute-intensive services achieve higher flop rates than data-intensive 
services. In GridSolve, the server’s speed is estimated by running a Linpack bench-
mark, which performs close to the peak flop rate of the processor. This is appro-
priate when the requested service is a compute-intensive one, such as for a linear 
algebra kernel. However, if the service is I/O bound (such as database access) or 
memory constrained (such as an out-of-core computation), the estimated runtime 
is likely to be a huge underestimation of the actual runtime.

Finally, for a given service, a slight change of a parameter may lead to a differ-
ent algorithm and a different time to execute the service. For instance, the matrix–
matrix multiply routine of the BLAS (dgemm) performs C ← αAB + βC, where A, 
B, and C are matrices. It is easy to see that the case α = 1 and β = 0 is completely 
different from the case α = 0 and β = 1. However, in the current GridSolve model, 
since the values of α and β are not related to the size of the data, they do not appear 
in the complexity model for the dgemm service.

To solve the problems described above, we propose using a complexity template 
model for each service that is instantiated on each server for each different use case 
of the service. This template model consists of a polynomial of the parameters of the 
problem, and a set of category variables. The polynomial describes the behavior of 
the service and has coefficients that will be assigned by GridSolve based on the prior 
execution performance history. The use of categories differentiates the separate per-
formance classes, which cannot be modeled as a continuous complexity function.

GridSolve uses a parametric regression system to compute or update the coef-
ficients for the complexity templates at runtime. Each time the server runs the ser-
vice, it updates the coefficients of the model using this run and the previous ones. 
A certain number of previous runs are stored on the server’s local disk, which can 
be reused if the server has to be stopped and restarted. The server periodically sends 
updates of the coefficients to the agent, which evaluates the expressions at runtime 
to get an accurate prediction of the execution time of the service. The detailed 
complexity parameters that the agent receives from the server allow more accurate 
scheduling decisions to be made.

11.3.3.3  Scheduling Using Proxies for Computational Resources

In this server-based approach to scheduling, GridSolve creates server-proxies to del-
egate the scheduling to specialized scheduling and execution services, such as batch 
systems, Condor, or LFC (LAPACK for Clusters). The GridSolve agent sees the 
server-proxy as a single server entity, even though the server-proxy can represent a 
large number of actual resources, and so the proxy handles the scheduling for these 
resources rather than the GridSolve agent.
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The GridSolve agent can decide to assign the service request to a server-proxy 
based on several factors (e.g., the proxy can register itself with the agent as a virtual 
server with a large amount of processing power). The server-proxy will delegate the 
request to the specialized service (e.g., Condor), which schedules and executes the 
request. The server-proxy then returns the results back to the client.

11.3.3.4  Client Scheduling

Scheduling based purely on computation cost may give poor results because the 
communication cost can be a very large factor in the overall RPC cost, especially in 
a WAN environment. While choosing the fastest server may minimize the execu-
tion time, if this server is on a distant network, the communication cost can easily 
overshadow the savings in the execution time.

To eliminate this weakness, we need an estimate of the network performance 
between the client and the servers that could possibly execute the service. This can 
be difficult to know ahead of time given the dynamic nature of the system, so we 
gather the information empirically at the time the call is made. When the client 
gets a list of servers from the agent, it is sorted based only on the estimate of the 
computational cost. Normally, the client would simply submit the service request 
to the first server on the list, but instead we first measure the bandwidth from the 
client to the top few servers using a simple 32 kB ping-pong benchmark. Given the 
total data size and the network speed, we compute an estimate of the total commu-
nication and computation RPC time for the servers and reorder the list of servers.

There is some cost associated with performing these measurements, but our 
expectation is that the reduction in the total RPC time will compensate for the 
overhead. Nevertheless, we try to keep the measurement overhead to a minimum. 
The time required to perform the measurement will depend on the number of serv-
ers that have the requested problem, and the bandwidth and latency from the client 
to these servers. When the data size is relatively small, the measurements are not 
performed, because it would take less time to send the data than it would take to 
perform the measurements. Also, since a given service may be available on many 
servers, the cost of measuring the network speed to all of them could be prohibitive. 
Therefore, the number of servers to be measured is limited to those with the highest 
computational performance. The exact number of measurements is configurable 
by the client. Once the measurements have been made, they can be cached for a 
certain amount of time so that subsequent calls on that client do not have to repeat 
the same measurement. The lifetime of the cached measurements is configurable 
by the user.

There are many other projects that monitor grid performance (see [17] or [18] 
for a review). For example, the Network Weather Service (NWS) [19] is a popular 
general system service that can monitor the performance of network bandwidth 
and latency (as well as other measures) and provide a statistical forecast for future 
performance. However, for the GridSolve system, most of the existing systems are 
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inappropriate because clients enter and leave GridSolve dynamically, making it dif-
ficult to measure and retain the communication costs between the clients and the 
full set of servers. Moreover, NWS is required to be configured on each end, which 
necessitates some expertise that we do not assume. Hence, we have chosen to imple-
ment low-overhead probes as a way of building up the communication cost matrix 
between a client and the servers relevant to that client.

11.3.3.5  Task Graph Scheduling

There are two deficiencies associated with the standard RPC-based model when 
a computational problem essentially forms a workflow consisting of a sequence of 
tasks, among which there exist data dependencies. First, intermediate results are 
passed among tasks by first returning to the client, resulting in additional data 
transport between the client and the servers, which is pure overhead. Second, 
since the execution of each individual task is a separate RPC session, it is diffi-
cult to explore the potential parallelism among tasks where there is no immedi-
ate data dependency. Our previous approach to request sequencing partially solves 
the problem of unnecessary data transport by clustering a sequence of tasks based 
upon the dependency among them and scheduling them to run collectively. This 
approach has two limitations. First, the only mode of execution it supports is on a 
single server. Second, it prevents the potential parallelism among tasks from being 
explored. Recent work on GridSolve has focused on creating an enhanced request-
sequencing technique that eliminates these limitations and solves the above prob-
lems. The core features of this work include direct inter-server data transfer and the 
capability of parallel task execution. The objective of this work is to simplify the 
parallel execution of data-driven workflow applications in GridSolve.

In GridSolve request sequencing, a request is defined as a single GridRPC call 
to an available GridSolve service. A data-driven workflow application is constructed 
as a sequence of requests, among which there may exist data dependencies. For each 
workflow application, the sequence of requests is scanned, and the data dependency 
between these requests is analyzed. The output of the analysis is a distributed acy-
clic graph (DAG) representing the workflow: tasks within the workflow are repre-
sented as nodes, and data dependencies among tasks are represented as edges. The 
workflow scheduler then schedules the DAG to run on the available servers. A set 
of tasks can potentially be executed concurrently if their dependencies permit it.

In order to eliminate unnecessary data transport when tasks are run on mul-
tiple servers, the standard RPC-based computational model of GridSolve has been 
extended to support direct data transfer among servers. Specifically, in order to 
avoid the case that intermediate results are passed among tasks via the client, serv-
ers must be able to pass intermediate results among each other, without the client 
being involved.

Recent experiments [20] demonstrated promising benefit from eliminating 
unnecessary data transfer and exploiting the parallelism found by automatically 
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constructing and analyzing the task graph. The algorithm for workflow scheduling 
and execution currently used in GridSolve request sequencing is primitive in that it 
does not take into consideration the differences among tasks and does not consider 
the overall mutual impact between task clustering and network communication. 
We are planning to substitute a more advanced algorithm for this primitive one. 
Additionally, we are currently working on providing support for advanced work-
flow patterns, such as conditional branches and loops, which are not supported in 
the current implementation.

11.4  RPC Transparency Issues
As we mentioned in the introduction, there are some nontrivial issues to deal with 
when aiming for a transparent RPC implementation. In this section, we discuss 
some of these issues within the context of the GridRPC specification and our 
GridSolve implementation.

11.4.1  Parameter Passing
In local procedure calls, arguments are passed by value or by reference. Pass-by-
value means that the actual value of the argument is passed to the procedure (e.g., if 
x has the value 5 and x is passed by value, then the procedure is given the value 5). 
In contrast, pass-by-reference means that a pointer is passed to the procedure, which 
must be dereferenced to obtain the actual values (e.g., if the value pointed to by x 
is stored in memory address 0 × 100, then the procedure is given the value 0 × 100). 
Pass-by-reference is useful in a couple of scenarios. First, it allows the procedure to 
modify the value of an argument, which is not possible in a pass-by-value situation. 
Also, it is more efficient for passing large data structures, like matrices, because only 
one address needs to be passed instead of all the values.

In the context of RPC, the problem with pass-by-reference is that the remote 
machine is in a different address space, so any pointers from the client machine will 
be meaningless. This could be handled by making requests back to the client when 
data from the remote pointer is accessed, but that would be very inefficient. The 
typical approach (and the one implemented in GridSolve) is to pass a copy of the 
data referenced by the pointer and then restore any modifications to the data upon 
completion of the RPC. However, in an asynchronous situation, the user needs to 
be careful because any modifications to the referenced data made after the call but 
before the results from the RPC are restored would be lost.

Another complication with parameter passing in RPC is that of complex or 
user-defined data structures. Sun RPC uses XDR (External Data Representation) 
[21], which is a standard for describing and encoding arbitrary data. In GridSolve, 
we chose to avoid XDR for performance reasons and because almost all of the pro-
cedures we were dealing with used simple data structures like vectors and matrices. 
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There are trade-offs between transparency, flexibility, simplicity, and efficiency. 
We gave up some transparency and flexibility to gain simplicity and efficiency.

11.4.2  Binding to Servers
RPC binding refers to locating the remote host with the procedure to be invoked 
and then finding the correct server process on that host. Traditional RPC required 
specifying the remote host name explicitly. When the user is expected to supply the 
host names for the remote calls, the veneer of transparency begins to erode. Also, 
it becomes more than just a transparency issue when asynchronous RPC is consid-
ered. In this case, the selection of the remote host to satisfy the request can have a 
big effect on the performance.

The GridRPC function handle represents a mapping from a service descriptor 
(in this case, a simple character string) to the remote server that will be used to 
execute the function. This mapping could be specified by the user or determined by 
the middleware using simple resource discovery mechanisms or possibly some more 
sophisticated scheduling algorithms. In the end, the GridRPC specification leaves 
the issue of binding up to the various implementations.

The normal GridRPC calling sequence is to first initialize the handle and bind to 
a server using a call to grpc _ function _ handle _ default() followed by 
a call to grpc _ call() (or one of its brethren) at some point later. In the case of 
the GridSolve implementation, there is a slight problem with performing the schedul-
ing in this scenario. GridSolve relies on having access to the values of the arguments 
in grpc _ call() at the time the scheduling is performed, so it can estimate the 
execution time and the communication cost of sending the data. However, at the 
time grpc _ function _ handle _ default() is called, we do not know 
which values will be used in the eventual call, so scheduling is not possible.

To deal with this issue, we allow the user to specify a special host name when 
initializing the function handle. The special name signifies to the GridSolve inter-
nals that the function handle binding should be delayed until the first time the 
handle is used to make a call. Subsequent calls using that function handle will not 
change the binding, so the semantics of successive GridRPC calls is not altered.

In terms of transparency, GridSolve does require the user to know the host 
name of the GridSolve agent, which performs the binding and scheduling, but 
the user never needs to know any of the server details. This seems like a reasonable 
trade-off because of multiple benefits provided by the agent.

11.4.3  Exception Handling and Fault Tolerance
Whenever communication with remote machines is involved, there is a possibil-
ity for new and subtle errors to appear. This can destroy the sense of transparency 
because now the user must deal with many new failure scenarios, which would 
never happen with a local procedure call. The GridRPC specification largely avoids 
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attempting to maintain this kind of procedure-level transparency. The GridRPC 
calls have their own return values and error codes that must be dealt with appropri-
ately. Any errors from the remote procedure itself must be passed back as an output 
argument of the RPC.

Despite the lack of transparency in exception handling, the GridRPC 
Specification leaves open the possibility of implementing transparent fault tol-
erance. In GridSolve, if a call fails, the system will automatically find another 
server to which to resubmit the job. This is completely transparent, so the user 
never knows that there were failures in the system. This brings up several issues 
of how to detect failures. There are many failure scenarios, and the handling of 
each one is a bit different, but these implementation details do not really affect the 
user’s perception of RPC transparency. The issue of fault tolerance also affects the 
issue of binding, because when errors occur, the final server handling the request 
might be different from the one originally selected. GridSolve allows the user to 
enable or disable the fault-tolerant mode in order to match the desired GridRPC 
semantics.

11.4.4  Data Representation
The internal representation of data is an important issue in RPC because the local 
and remote machines may have different word lengths, floating-point formats, 
and byte orderings. If the user has to think about their data representation or 
data structures, the illusion of transparency is lost. We mentioned XDR earlier 
as a solution to the issue of passing complex data structures, but XDR also han-
dles conversion of primitive data types between architectures by using a common 
intermediate representation. The GridRPC specification says nothing about data 
conversion, so it is left up to the implementors to decide. In GridSolve, we imple-
mented a receiver makes right protocol, which allows the client to send data in its 
native format, which the receiver then converts to its own native format if needed. 
This avoids having to do two separate conversions (each end converting between 
native and common representations) as well as avoiding making an extra copy of 
the data on the sending side. GridSolve is still limited in its support for complex 
data structures, but we feel the increased efficiency in the common cases is worth 
making the trade-off.

11.4.5  Performance
While we make great effort to ensure good performance in GridSolve, the fact 
remains that extra communication overhead is inherent in any RPC. It was men-
tioned in [3] that if you had a truly transparent RPC for arbitrary applications, 
serious performance degradation could be inadvertently introduced. Of course, 
GridRPC specifies a different API for remote calls, so users will be aware of which 
calls are local and which are remote. Nevertheless, to achieve the best performance 
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in an RPC-based application, the developers should carefully consider the ratio of 
computation time to communication time (since processor power has been increas-
ing faster than communication speed, this issue gets more serious every year). Take 
matrix multiplication as an example. We compute C ← αAB + βC, where A, B, and 
C are matrices. For the sake of simplicity, assume that they are all square matrices 
of size N × N. The communication costs will be on the order of
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where
“elementsize” is the size of each matrix element in bytes
“bandwidth” is the number of bytes per second for the network

Assuming a local network bandwidth of 11 MB/s and an element size of 8 bytes, 
the communication cost for N = 3000 is around 25 s. The computational costs will 
be on the order of
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where Mp is the performance of the machine in floating-point operations per sec-
ond. At N = 3000 and local machine performance of Mp = 800 Mflop/s, the local 
computation cost would be roughly 22.5 s. So, it costs more to send the data (not 
counting the remote execution time) than it would to just do the computation 
locally. Since the computation cost is growing faster than the communication cost, 
there will eventually be a crossover point where it makes sense to do the RPC, but 
it depends on the performance of the remote machine relative to the local machine 
as well as the network speed (WANs are often much worse than our 11 MB/s LAN 
example).

While this example might be discouraging, there are still many favorable sce-
narios for RPC, especially when taking into account task parallelism. One example 
is in parameter sweep problems, where the data being distributed is relatively small, 
and many servers can be used asynchronously and simultaneously to evaluate dif-
ferent input data with the output being collated in some way. Tasks that are suited 
to RPC computation include Evolutionary Algorithms (genetic algorithms, etc.), 
Monte Carlo–style algorithms, and optimization algorithms.



272  ◾  Cloud Computing and Software Services

11.4.6  Security
Unlike with local procedures, when executing a remote procedure, the data is 
exposed on the network and therefore susceptible to snooping. Security is another 
area that is not addressed by the GridRPC specification, but the various implemen-
tations choose their own strategies. We have not implemented any data encryption 
methods in GridSolve. It is an important issue, but most of our users are running 
the entire GridSolve infrastructure on their local networks (e.g., behind firewalls). 
Because of this, there has not been a huge demand for encryption in GridSolve, but 
it should be straightforward to add since we have already implemented a transpar-
ent data compression module, and encryption could be added to this module at the 
data transport level.

11.4.7  Transparency
Trying to achieve total transparency (even if it is possible) would result in unex-
pected behavior and unacceptable performance degradation. As it was mentioned 
earlier, from a design standpoint, total transparency might not be the ideal any-
way. We have attempted to design a system that is transparent in the sense of 
shielding users from unnecessary details and allowing for relatively painless con-
version of code to a distributed implementation. The user still retains control 
over their application in deciding which functions are appropriate for remote pro-
cessing. But the user does not need to know which server will be used, how the 
data will be converted, whether the job was resubmitted to another server due 
to failures, etc. This level of partial transparency allows the GridSolve system to 
provide better overall performance for the users while leaving the user in control 
of their application.

11.5  Summary
Using distributed grid resources in a simple and effective manner is difficult, 
though there are multiple programming models that are attempting to meet this 
challenge. The GridRPC API is a simple and portable programming model pro-
viding a standardized mechanism for accessing grid resources. GridSolve provides 
an implementation of GridRPC and adds a substantial list of features that are 
designed to make access to grid resources transparent and easier to accomplish. 
Client bindings for commonly used SCEs (e.g., MATLAB, Octave, and IDL) make 
it easy for a computational scientist to use grid resources from within their preferred 
tools. Transparent scheduling via the GridSolve agent relieves the user from having 
to know the details of the servers and service providers. Service-level fault toler-
ance provides a simple and usable mode for failure recovery. Task graph scheduling 
allows the composition of sequences of tasks into an inferred workflow, without 
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requiring additional input from the user. Using all these techniques and more, 
GridSolve has been working to make the grid easier to use, and further research on 
this goal continues.
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