
David W. Walker and Dashan Lu
School of Computer Science and Informatics

Cardiff University, UK
david@cs.cf.ac.uk

Automatic Generation of Portals for
Distributed Scientific Applications

Overview
  Portals to distributed scientific applications"
  Introduction and motivation for the automatic

 portal creation."
  Portal building based on XML workflow

 descriptions."
  Embedding interfaces in published documents."

David W. Walker @ CCGSC2010 2

Application Portals
  Application portals are web-accessible interfaces to

distributed applications."
  These applications can be expressed as workflows,

represented by DAGs, and expressed in XML."
  DAG nodes are Web services, and arcs are SOAP

messages."
  Node tasks may run concurrently, and may contain

internal parallelism that can be exploited through
MPI, OpenMP, MapReduce, etc."

  Hide complexities of using distributed resource from
the users"

3 David W. Walker @ CCGSC2010

David W. Walker @ CCGSC2010 4

Motivation
  Scientific application users often want to:"

 Replace one algorithm with another"
 Replace one file with another"
"while the structure of workflow stays the same."

OR"
  They may want to edit an existing workflow, for

 example, to insert a new node."
  Basic entities in the workflow are task nodes

 (services) and data nodes (files)."

David W. Walker @ CCGSC2010 5

David W. Walker @ CCGSC2010 6

F2

F1

S1

S3 S2

S4

S5

Input file

Output file

Intermediate file F3

Different Types of Workflow
  A skeleton workflow is a DAG composed of task

 and data nodes, without specifying any details."
  An abstract workflow specifies what the services

 that make up the workflow do, but does not
 specify particular implementations for these
 services. This is an application template."

  A concrete workflow specifies not only what the
 services in the workflow do, but also specifies
 their service implementations. Specific files are
 also identified. A concrete workflow is
 executable."

David W. Walker @ CCGSC2010 7

What a Portal Does
  For this type of application we need a portal to

 provide an interface through which a user can:"
 Associate a task node with a particular service

 implementation. The user selects between
 semantically equivalent services."

 Associate a data node with a particular file."
 Execute the workflow."

  Thus the portal converts an abstract workflow into
 a concrete workflow."

  The above tasks are carried out by the portal
 using JSR-168 portlets."

David W. Walker @ CCGSC2010 8

Restrictions of Hand-crafted Portals

T 1 T 2 T 4

T 3

T 5
How do you insert Task 5
into this predefined workflow
and how do you create a
new portal for this new
workflow?"

9 David W. Walker @ CCGSC2010

A Problem and Solution
  Creating portals for different workflow structures

is difficult for users who have no expertise in Web
portal programming and Web services."

  We would like to automatically generate portal
based on the XML workflow description."
 Build a workflow structure (especially in a visual

programming environment)"
 Label services and file types in the workflow "
 Generate a portal environment"

10 David W. Walker @ CCGSC2010

The Components of the
 Portal Generation System

11 David W. Walker @ CCGSC2010

Design Tool
  Is a visual programming environment "
  Draws the skeleton workflow"
  Converts the skeleton workflow into an XML file

that conforms to a specific XML schema."

12 David W. Walker @ CCGSC2010

Label tool
  Connects to web service and file repositories. "
  Associates a file or service type with each node of

the skeleton workflow."
  Creates an XML file describing the abstract

workflow."

13 David W. Walker @ CCGSC2010

File and Service Types
  A set of files are said to have the same file type if

 their content conforms to the same specified
 template or schema."

  A set of services are said to have the same
 service type if they have the same typed
 interface and perform the same high-level
 computational task."

  In this context, saying that a set of services have
 the same service type is the same as saying that
 they are “semantically-equivalent services”."

David W. Walker @ CCGSC2010 14

Build Tool
 Retrieves the details on the sets of web

services and files registered in the file and
service repositories, respectively."

 Creates a new portal corresponding to the
abstract workflow description file created by
the Label Tool. "

 The Build Tool uses XSLT technology to
convert an abstract workflow into a portal
WAR file."

15 David W. Walker @ CCGSC2010

16 David W. Walker @ CCGSC2010

Prototype System

Structure of the Build Tool

17 David W. Walker @ CCGSC2010

Portal Generated by the Build Tool
 The portal is used to generate a service-

oriented application by selecting different web
service instances and creating an activeBPEL
concrete workflow description file."

 The activeBPEL file is then deployed on a
workflow execution engine via the network."

 The portal also provides users with a portlet to
execute the workflow and monitor the result."

18 David W. Walker @ CCGSC2010

Future work
  Multiple portal framework support (JetSpeed,

WebSphere, etc)"
  Multiple third-party workflow engine support"
  Workflow execution optimization "

 Asynchronous service invocation on dual HTTP
channels"

 More checkpointing support."

19 David W. Walker @ CCGSC2010

Publishing Research Results
 and Data

  Living documents are a novel way of
 electronically publishing research results.
 Readers can replay simulations, and experiment
 with changing input parameters."

  Embed links to web interface in paper (in pdf for
 example)."

  Specify input data in web interface."
  Receive back plot of results in browser or via

 email."

David W. Walker @ CCGSC2010 20

Living Documents
  Input data form invokes Java servlet."
  Java servlet acts as resource broker for

 accessing distributed resources (clusters, grid,
 cloud, Condor)."

  Can exploit coarse-grain parallelism."

David W. Walker @ CCGSC2010 21

Provenance Support
  When a workflow executes in a service-based

 environment we want to:"
1.  Document data provenance for the data created

 by the execution."
2.  Use the provenance documentation as a recipe to

 re-execute the workflow."
  This is done through a Provenance Service."

David W. Walker @ CCGSC2010 22

Provenance Service
  A client wishing to capture the provenance of his/her

 process execution submits the file describing the
 Web service composition to the Provenance
 Service."

  The Provenance Service is responsible for:"
1.  Interacting with the workflow engine for the execution

 of the composite workflow."
2.  Capturing the provenance of the process execution."
3.  Recording the captured provenance of the process."

  The Provenance Service returns the final result data
 of the execution and informs the client of
 completion."David W. Walker @ CCGSC2010 23

Use of Provenance Data
  The client is allowed to browse and query the

 recorded provenance of the processes that s/he
 previously executed."

  The client is able to validate previously-run
 processes, the incorporated web services, and
 the returned output data through re-execution of
 the process via its provenance."

  The client can also change the input parameters
 of the process during re-execution to perform
 “what-if” analyses."

David W. Walker @ CCGSC2010 24

David W. Walker @ CCGSC2010 25

David W. Walker @ CCGSC2010 26

