Enhancing the Dependability of
Extreme-Scale Applications*®

Hans P. Zima

Jet Propulsion Laboratory, California Institute of Technology
and

Institute for Scientific Computing, University of Vienna, Austria

Clusters, Clouds, and Grids for Scientific Computing

CCGSC 2010
Flat Rock, North Carolina, September 10t, 2010

*This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration and funded through the internal Research and Technology Development Program

Contents

1. Introduction
2. Dependability

3. Introspection Framework for Fault
Tolerance

4. Generation of Fault-Tolerant Code

5. Conclusion

Extreme Scale Systems
Aggressive Strawman Design (Bill Dally, Peter Kogge

€ 166 million cores, 742 cores/chip

¢ Cost of data access and synchronization (in terms of
energy) by far dominates the cost of computation

Linpack Study (Peter Kogge):
475pJ data access (average) for 1 FLOPS (10pJ)
¢ Memory Capacity: 0.0036 B/FLOPS, 20 MB/core

¢ Hardware and software errors will become an issue
—traditional checkpointing and recovery may become
infeasible.

Key Challenges for Extreme-Scale Systems

¢ Concurrency
¢ Power/Energy / Locality

®High-Level Abstractions for
Programming

¢ Dependability

A Short Note on
High-Level Abstractions and Dependability

The size and complexity of the code
for a given application problem

Is relevant for dependability
(independent of language support for dependability)

For example...

Fortran+MPI Communication

for 3D 27-point Stencil (NAS MG rprij

subroutine comm3 (u,nl,n2,n3,kk)
use caf_intrinsics

implicit none buff_len = buff len + 1

bufe (buff_len, buff id) = u(i1, 2,i3)

include 'cafnpb.h’ enddo

include 'globals.h' enddo

integer nl, n2, n3, kk bugE (1:buff_len buff_id+1) [nbr (axis,dir, k)] =
double, precision u(nl,n2,n3) > buge (1:bues_len, buse_id)
integer axis

else if(dir .eq. +1) then
L£(.not. dead(kk))then
do axis =1, 3

if(nprocs .ne. 1) then

call sync_all() buff_len = buff len + 1

butf (buff_len, buff_id
enddo

call gived(axis, +1, u, ni, n2, n3, kk)

, n2, n3, kk)

u(i1,n2-1,13)
call give3d(axis, -1, u

call sync_all() enddo
call take3(axis, -1, u, nl, n2, n3.)
call take3(axis, +1, u, nl, n2, n3.) butf (1:buff_len buff_id+l) [nbr (axis,diz k)] =

else > Butf (1:buft_len buff_id)

call commlp(axis, u, nl, n2, n3, kk)
endif endif
enddo, endif
else
do axis =1, 3 i€(axis .eq. 3)then
call sync_all() 1f(dir .eq. -1)then
call syne_all()

enddo, do 2
call zero3(u,ni,n2,n3) do i1e1,m1
endif bufe_len = buef_len + 1
zeturn buge (buee_len, buef_id) = u(11,12,2)
and enddo
enddo

subzoutine gived(axis, diz, u, ni, n2, n3, k) bBUfE (1:buff_len,buff_id+l) [nbr (axis,dir, k)]
use caf_intrinsics > bufE (1:buff_len buff_id)

else if(dir .eq. +1) then
implicit none

include 'cafnpb,h'
include 'globals.h'

buff_len = buff_len + 1
buff (buff_len, buff_id) = u(il,i2,n3-1)
enddo
enddo

integer axis, dir, nl, n2, n3, k, ierr

double precision u(nl, n2, n3.)

integer 13, 12, i1, buff len butf id bufE (1:buff_len, buff_ids1) [nbr (axis,dir,k)]

> buff(1:buff_len,buff_id)
bufe id = 2 + air
buge_len = 0 endit
endif
i axis .eq. 1)then
i£(diz .eg -1)then return
end
bufE_len = buff_len + 1 subroutine take3(axis, dir, u, nl, n2, n3)
buft(buff len buff id) = u(2, i2,i3) use caf_intrinsics
enddo

enddo,
implicit none
bufE (1:bu€_len buf€_id+1) [nbr (axis,dir k)]

> Bufe (1:bu_len, buff_id) include 'cafnpb.h'

include 'globals.h’
else if(dir .eq. +1), then
integer axis, dir, nl, n2, n3

double precision u(nl, n2, n3)

buff_len = buff_len + 1 integer buff id, indx
buff (buff_len, buff_id) = u(ni-1, i2,i3)
enddo.

enddo

integer 13, i2, il

buff_id = 3 + dir

bufE (1:buf_len buff_id+1) [nbr (axis,diz k)] indx = 0

bUEE (1:buff_ len buff_id)
if(axis .eq. 1)then
endif, i€(dir .eq. -1)then
endif
£ axis 2.)then
if(dix -1)then

u(n1,42,43) = bufe (indx, buef_id) do i=1,nm2
enddo bugf (4, buge_id) = 0.000

enddo enddo

else if(dir .eq. +1) then

dir = 41
do 13%2,n3-1
do 12=2,n2-1 bufe_id = 3 + dir
indx = indx + 1 buff_len = nm2
u(1,42,13) = buff (indx, buff_id)
enddo do i=1,mnm2
enddo buf (i buff_id) = 0.000
enddo
endif
endit dir = 41
if(axis .eq. 2)then buff_id = 2 + dir
if(dir .eq. -1)then buff_len = 0
do i3=2,n3-1 if(axis .eq. 1)then
do i1=1,n1 do i3=2,n3-1
indx = indx + 1 do i22,n2-1
u(i1,n2,13) = buff (indx, buff_id) buff_len = buff_len + 1
enddo buff (buff_len, buff_id) = u(nl-1, i2,i3)
enddo enddo
enddo
else if(dir .eq. +1) then endit
do i3=2,n3-1 if(axis .eq. 2)then
do i1=1,n1 do i3=2,n3-1
indx = indx + 1 do i1=1,n1
W(i1,1,43) = buff (indx, buff_id) buft_len = buff_len + 1
enddo buff (buff_len, buff id)= u(i1,n2-1,i3)
enddo enddo
enddo
endif endit
endit
if(axis .eq. 3)then
if(axis .eq. 3)then do i221,n2
i€(dir .eq. -1)then do i1=1,nm1
buff_len = buff_len + 1
do i2e1,n2 buft (buff_len, buff_id) = u(il,i2,n3-1)
do i1=1,n1 enddo
indx = indx + 1 enddo
W(i1,42,n3) = buff (indx, buff_id) endie
enddo
enddo -1
else if(dir .eq. +1) then buff_id = 2 + dir
buge_len = 0
do 12=1,n2
do i1=1,m1 if(axis .eq. 1)then
indx = indx + 1 do i3=2,n3-1
u(i1,42,1) = buff (indx, buff_id) do i2=2,n2-1
enddo buff_len = buff_len + 1
enddo bute (buf_len bufe id) = u(2, 12,13)
enddo
endif enddo
endit endit
return if(axis .eq. 2)then
end do i3=2,n3-1

do i1=1,n1
buft_len = buff_len + 1
subroutine commlp(axis, u, nl, n2, n3, kk) buff (buff_len, buff id) = u(i1, 2,i3)
use caf_intrinsics enddo
enddo
endit
implicit none
if(axis .eq. 3)then
include 'catnpb.h' do i2=1,n2
include 'globals.h' do il=1,nm1
buff_len = buff_len + 1

integer axis, dir, nl, n2, n3 buft (buff_len, buff id) = u(il,i2,2)

double precision u(nl, n2, n3) nddo,
enddo
integer 13, 12, i1, buff_len,buff_id enaif
integer i, Kk, indx
do nm2
dir = -1 buf£ (i, 4) = buff(i,3)
buff(i,2) = buff(i,1)
butf_id = 3 + dir enddo

buff_len

om2

buf

indx

if(axis .eq. 1)then
do i3=2,n3-1
do i22,n2-1
inde = indx + 1
u(n1,i2,13) = buff (indx, buff_id)
enddo
enddo
endit

if(axis .eq. 2)then
do i3=2,n3-1
do il=1,nm1
indx = indx + 1
w(i1,n2,43) = buff(indx, buff_id)
enddo
enddo
endit

if(axis .eq. 3)then
do i2=1,n2
do i1=1,n1
inde = indx + 1
W(i1,42,n3) = buff (indx, buff_id)
enddo
enddo
endit

dir = 41

buff_id = 3 + dir
indx = 0

i€(axis .eq. 1)then
do i3=2,n3-1
do i22,n2-1
indx = indx + 1
w(1,32,43) = buff (indx, buff_id)
enddo
enddo
endit

if(axis .eq. 2)then
do i3=2,n3-1
do il=1,nl
indx = indx + 1
W(41,1,43) = buff (indx, buff_id)
enddo
enddo
endit

if(axis .eq. 3)then
do i221,n2
do i1=1,nm1
inde = indx + 1
W(i1,42,1) = buff (indx, buff_id)
enddo

enddo
endie

return
end

Chapel 3D NAS MG Stencil rprj3

function rprj3(S,R) {
const Stencil: domain(3) = [-1..1, -1..1, -1..1], // 27-points
w: [0..3]real = (/0.5, 0.25, 0.125, 0.0625/), // weights
w3d: [(i,j,k) in Stencil] = w((i!'=0) + (j'=0) + (k!=0));

forall ijk in S.domain do

S(ijk) = sum reduce [off in Stencil] (w3d(off) * R(ijk + R.stride*off));

Contents

1.
2. Dependability

3.

Dependability*

The ability of a computing system to deliver service that can be justifiably trusted

Faults

Threats Errors

Failures

Availability
Reliability

Dependability Attributes Safety
Integrity

Maintainability

Fault Prevention

Means Fault Removal
(Fault Protection)

Fault Tolerance

*A. Avizienis, J.-C.Laprie, B.Randell: Fundamental Concepts of Dependability. UCLA CSD Report 010028, 2000

Threats: the Fault-Error-Failure Chain (&

System Boundary
(Service Interface)

_ propagation
propagation to service

activation boundary
Error —> Error
R
defect in a system . j j . .
Y .’, invalid system state violation of system
R specification
R
.
R
)

external fault
(caused by external failure)

Fault Protection

¢ Fault Prevention: via quality control during design and manufacturing
of hardware and software
- structured programming, modularization, information hiding; firewalls
— shielding and radiation hardening

¢ Fault Removal: Verification and Validation (V&V), model checking

In general, fault prevention and removal cannot guarantee the absence
of errors—for theoretical as well as practical reasons (undecidability, NP
-completeness, etc.). Even a perfectly correct program may be subject to
hard and soft errors. This motivates the need for fault tolerance as a third
category of fault protection.

Fault Protection ctd.

¢ Fault Tolerance: the ability to preserve the
delivery of correct service (system specification) in
the presence of active faults

- error detection
- recovery: error handling and fault handling

- fault masking: redundancy-based recovery
without explicit error detection (e.g., TMR)

Fault Tolerance

propagation to
activation service boundary

Fault > Error

fault tolerance

elimination of detected errors

well-defined

prevention of fault activations system state

Issues in Dependability for

Extreme-Scale Systems

¢ Extreme-scale systems will have less reliable
components (due to smaller feature sizes) and a
larger component count than current systems:
as a consequence, errors are expected to
become the norm, not an exception

¢ Checkpointing and recovery may become
intolerably expensive—and even infeasible,
depending on MTTF

¢ Dynamic power management may have a
negative effect on hardware reliability (thermal
stresses)

Issues in Multi-Core Fault Tolerance
Challenges

¢ Fault in a shared component of a multi-core chip may
affect the whole chip

- caches, memory controller, I/O circuitry, on-chip networks
- fewer natural boundaries than for traditional architectures
- example: failing cache controller for L2 cache in Sun Niagara

¢ Possible Solution: Hardware-Supported Isolation*

- partition sets of components into independently configurable units
- Tile64 chip supports “walling off” sets of cores

*N.Aggarwal,P.Ranganathan,N.P.Jouppi,J.E.Smith :IEEE Computer, June 2007

Issues in Multi-Core Fault Tolerance

Opportunities
otO.Cores are becoming an . o
inexpensive resource o0R2 Cont
PC | XAUIO)
(o MAC Y
PHY n : PHY
<Use of cores for: e | :jg =
checkpointing)’F‘,—',";Tﬁﬁ' . S
R Np task1 T Flexible
e 'll'l" o
spares — >Pﬂ°c1 c XAUI1
PHY i
PHY
DDR2 Conbic _1 B SO
Specification: Allocation of cores to tasks (RT Chapel) a4

const L:[n,n]locale = reshape (Locales)

on L(2..pl,2..91) do taskl
on L(pl+l..n-1,2..92) do task2
on L(2..pl,gl+l..n-1) do task3
on L(pl+l..n-1,g2+1..n-1)do task4

on L(2..n-1,1) do Introspection
on L(l1,2..n-1) do Checkpointing
allocate spares to L(l..n,n)

Contents

1.
2.

3. Introspection Framework for Fault
Tolerance

Focus of Work

¢ Development of an Introspection Framework for
adaptive fault tolerance

¢ Development of an API for expressing
dependability requirements of applications

¢ Compiler analysis for the generation of redundant
code and intelligent optimization of checkpointing

¢ Development of fault tolerance metrics

A Framework for Introspection

Introspection...

¢ provides dynamic monitoring, analysis, and feedback,
enabling system to become self-aware and context-aware:

- monitoring execution behavior
- reasoning about its internal state
- changing the system or system state when necessary

¢ exploits adaptively threads available in multi-core systems

4 can be applied to a range of different scenarios, including:

<

- energy and power management

- fault tolerance
- performance tuning

- behavior analysis

Adaptive Introspection-Based Fault Tolerance

Adaptive Fault Tolerance: the capability to provide dependability based on a
fault model, application requirements, and system properties

Introspection provides functionality for error detection, analysis and recovery

application Introspection
Framework

monitoring
analysis inference
recovery engine
prediction
knowledge/
rule base

executable

adaptation code

actuator links

sensor links ‘

actuator links

Introspection Framework Architecture

¢ The architecture of the Introspection Framework depends
on the structure of the application, the mapping of
application components to the hardware, and related
dependability requirements

¢ Introspection Modules—the atomic components of this

structure—are arranged into an infrospection graph,
which expresses a control relation in the set of modules

¢ Each introspection module is associated with application
components and performs specialized functions related
to these components

¢ This supports a capability for component-based fault
tolerance, supporting heterogeneity as well as the
capability to deal with errors locally, in parallel, and at the
earliest possible time

Introspection-Based Fault Tolerance Architecture:

Example: PS3 Cluster

external
* links *

Sensors

Inference Engine

Host

PPE Level

.
H
L4 .
............................ : Nitiiog
. : Analysis
H :
S
| : Feedback/Rec
Prognostics
Actuators
—
-~
- -~ -
- T~
- -~
- S
i hal
Sensors Sensors -
Inference Engine O Inference Engine
. -
O .
m}
Knowledge : Knowledge
Base : :
D Base
P ti
Actuators
-3
~
L S
]
~
~
« Engine =
i —
. o
b
B, Sl

SPE Level

Fault Classes under
Consideration

* transient faults
» hard faults

* software design faults

Sensors provide input

to the introspection system
(e.g., state information,
assertion values, hardware
alarms)

Actuators provide
feedback from the
introspection system to
the application (e.g., error
analysis information,
suggestions for recovery
algorithms, modification
of instrumentation)

Introspection Module

»atomic*“ component of introspection

Application
System

Environment

Sensors

O

O
O

actuators

Introspection System

Inference Engine
(SHINE)

I Recovery I

Knowledge

Application
Knowledgg

IPrognosticsI

Facts/Rules

Introspection Complements V&V

¢ Introspection performs execution time
monitoring, analysis, recovery

¢ Introspection can deal with transient errors,
execution anomalies, performance problems

— this capability is inherently beyond the scope of V&V
technology

- and it can be used to deal with design errors

¢ Future Goal: integration of introspection with V&V
technology into a comprehensive program
development scheme

Contents

3. Generation of Fault-Tolerant Code

4.

Compiler- and Tool-Supported Fault Tolerance

exploiting

original results of

source program analysis automatic

p roQ ram program
analysis

Program
KB

| Fault Model |

leveraging
standard
fault
tolerance
methods

assertion generation

instrumentation

redundant code generation

exploiting
domain and
application
knowledge

extended Introspection

source program

Framework

Static and Dynamic Analysis

¢ Static analysis and profiling determine properties of
dynamic program behavior before actual execution

¢ Analysis of Sequential Threads
- control & data flow analysis: solving flow problems over a program graph
- dependence analysis: determining read/write relationships
- slicing: determining the set of statements that affect a variable’s value

¢ Analysis of Parallel Constructs
- data parallel loops: analysis of “independence” property
- locality and communication analysis
- race condition analysis
- safety and liveness analysis
- deadlock analysis

¢ Dynamic Analysis
- program control and data flow, dynamic dependences
- performance, enerqgy, and behavior analysis

Concluding Remarks

¢ Extreme-scale systems will need to deal with errors in a
flexible and adaptive way

¢ Introspection

— provides a generic framework for dynamic monitoring and analysis of
program execution, together with a recovery scheme

— can support fault tolerance, performance tuning, power management

¢ Analysis of program properties provides a basis for automatic
generation of application-adaptive fault-tolerant code

¢ Integration of conventional V&V technology with
introspection can provide a comprehensive approach to
fault tolerance

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology

