
Bag-of-Tasks Scheduling under
Budget Constraints

XtreemOS IP project
 is funded by the European Commission under contract IST-FP6-033576

Ana Oprescu, Thilo KielmannThilo Kielmann

Vrije Universiteit, Amsterdam
kielmann@cs.vu.nl

2

Bags of Tasks

 Parameter sweep applications
 High-throughput computing (Condor like)
 (OK, it's also a simple model to study...)

 Execution model (traditionally)
 “Grab and run!”
 Scientific users simply allocate all machines

they can get hold of
 Computations for free, best effort execution
 Networks of workstations, clusters, grids,...

The promise of the cloud

 Elastic computing, get exactly the machines
you need, exactly when you need them...

 Well, did we mention you have to pay for the
hour?

“Quality of Service”

 Small Instance, $0.085 per hour
 1.7 GB of memory, 1 EC2 Compute Unit (ECU)

 High-memory extra large, $0.50 per hour
 17.1 GB memory, 6.5 ECU

 High CPU medium, $0.17 per hour
 1.7 GB of memory, 5 EC2 Compute Units

Which one is faster for my application???

Which one is cost efficient???

What's in a bag?

 Many independent
tasks

 Let's focus on
the budget here...

 Runtimes are
unknown to the user

 Tasks have some
runtime distribution,
but we don't know it
either

 Tasks can be aborted
/ restarted if needed

What's in a cloud?

 A cloud offering provides machines of certain
properties like CPU speed and memory

 All machines in a cloud offering are
homogeneous

 There is an upper limit of machines per cloud
that a user can get

 A machine is charged per Accountable Time
Unit (ATU); 1 hour, for example

 We call a cloud offering (machine type, price,
max. number) a cluster

 We are HPC guys, after all...

What's the problem?

 We are on a budget.
 We know nothing.

 We want to
 Run all tasks from our bag on (cloud) clusters,

without spending more than our budget
 Allocate/release machines dynamically while

learning how fast our tasks execute on the
different clusters

 If we learn that our budget is too low, give up
 Minimize makespan of the whole bag, if we can

make it within budget

BaTS

 Budget-constrained task
scheduler

Job Profiler

Estimating task runtimes, for each cluster:
 Keep a moving average, update during

execution
 Initialize the average

using a small, initial
sample

 Statistics for
sampling with
replacement

 For the initial sample,
keep an ordered list of
runtimes

Disclaimer:
This is going to be statistics for dummies engineers...

Job Profiler (2)

For each cluster:
➔ Start with a set of initial workers
➔ Run the initial sample

At regular monitoring intervals:
➔ Reconfigure based on estimates

➔ Remaining problem (less tasks and money left)
➔ For updating the moving average, running tasks are

estimated by the average of the “tail” from the current
runtime to the end of the distribution of the sample set

➔ Run more tasks

Cluster Configuration

 From the average speed of each cluster, (in tasks
per minute) we can compute estimates for
makespan (Te) and cost (Be) for a configuration
from nodes of multiple clusters:

 We minimize Te while keeping Be <= B using
 a modified Bounded Knapsack Problem (BKP)

 The BKP can be solved in pseudo-polynomial
time, as 0-1 knapsack problem via linear
programming

 BaTS chooses the configuration with minimal Te
for Be <= B

Cluster Monitoring

 BaTS regularly re-evaluates the current cluster
configuration:

 The moving averages converge during the run
 Execution on real machines adds some

complexity:
 Individually requested from the cloud provider,

startup time until ready
 Each machine has its own end of the next ATU
 Tasks have runtime granularity, may leave

machine time unused
 For each reconfiguration, BaTS keeps track of

 Time on machines we already paid for
 Actual speed (tasks/minute) achieved per

cluster

Let's try it out

 DAS-3 multi-cluster system
 Emulate 2 clusters (clouds) of 32 machines each
 Machine allocation by job submission via SGE

 (without competing users)
 Bag of 1000 tasks with predefined runtimes

 Normal distribution mean = 15min, stddev = 2.27 min
 [Iosup et al., HPDC 2008] show that bags

typically have some normal dstribution
 Task “execution” by sleep(runtime)
 Fast/slow machines emulated by linearly

modifying the sleep time
 Compare BaTS to a round-robin scheduler (RR),

always using 32+32 machines

Profitability (experiment setup)

Cluster 1 running with normalized speed and cost

Cluster 2 has varying speed and/or cost

Design space for BaTS is in the profitability of cluster 2
w.r.t. Cluster 1

Conclusions

 Choosing the right cloud offering is tough

 BaTS can help staying within budget while still
performing reasonably well

 Guessing a proper budget up front is our
current challenge

 Work in progress: pre sampling (even smaller)

 Less low hanging fruit:
 DAG's instead of BoT's (dependencies)
 BaTS for MapReduce?

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

