
Think Like a
{Vertex, Column, Parallel Collection}

Pregel: a system for large-scale graph processing
Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski

SIGMOD’10

FlumeJava: Easy, Efficient data-parallel pipelines
Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry, Robert Bradshaw, Nathan Weizenbaum

PLDI’10

Dremel: Interactive Analysis of Web-Scale Datasets
Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, Theo Vassilakis

VLDB’10

David Konerding, Google Inc.

Google’s data-intensive parallel
 processing toolbox

MapReduce is already well-known; external implementations are becoming
popular in industry and academia.

MR is not designed to handle many kinds of problems, so in the past few
years we have developed new toolkits/frameworks for doing data-intensive
parallel processing.

Some common situations where we need alternatives:
• Large graph operations with multiple steps.
• Interactive tools for data analysts dealing with trillion-row datasets.
• Pipelines with complex data flow

Think Like a Vertex

Pregel: a system for large-scale graph processing
Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, James

C. Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski
SIGMOD’10

Most similar existing framework: Parallel Boost Graph

Model of graph computation
Motivated by:
Bulk Synchronous
Parallel
Valiant, CACM'90

•  computation on local data (parallelism, !deadlock, !race)
•  "batch&push" communication, no "pull" (!latency)
•  message sending overlaps with computing
•  synchronization barriers (programmability) halt

Single-source shortest paths in Pregel
class ShortestPathVertex : public Vertex<int, int, int> {
 public:
 virtual void Compute(MessageIterator* messages) {
 int min_dist = IsSource(vertex_id()) ? 0 : INT_MAX;
 for (; !messages->Done(); messages->Next()) {
 min_dist = min(min_dist, messages->Value());
 }
 if (min_dist < GetValue()) {
 *MutableValue() = min_dist;
 OutEdgeIterator iter = GetOutEdgeIterator();
 for (; !iter.Done(); iter.Next()) {
 SendMessageTo(iter.Target(),
 min_dist + iter.GetValue());
 }
 }
 VoteToHalt();
 }
}; vertex value is initialized

to INT_MAX

Implementation

master

worker worker worker

Graph partitioned across workers. Partitions reside in workers' memory

master:
load graph, compute,
checkpoint, restore,
save, exit

workers:
register,
report result
of operation

Fault-tolerance

Daly, FGCS '06 :

optimal time between
checkpoints =

sqrt(2 * C * M) - C

C = [constant]
checkpoint cost

M = mean time to
[Poisson] failure

Usage of Pregel at Google

Easy to program and expressive

•  Breadth-first search
•  Strongly connected components
•  PageRank
•  Label propagation algorithms
•  Minimum spanning tree
•  Δ-stepping parallelization of Dijkstra's SSSP algorithm
•  Several kinds of vertex clustering
•  Maximum and maximal weight bipartite matchings
•  many more!

Used in dozens of projects at Google

Think Like a Column

Dremel: Interactive Analysis of Web-Scale Datasets
Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer,

Shiva Shivakumar, Matt Tolton, Theo Vassilakis
VLDB’10

B
C D

E
*
*

*

. . .

record-
oriented

. . . r1

r2 r1
r2

r1

r2

r1

r2

column-
oriented

Most similar external application: Hadoop Pig

Dremel

•  Trillion-record, multi-terabyte datasets
•  Scales to thousands of nodes
•  Interactive speed
•  Nested data
•  Columnar storage and processing
•  In situ data access (e.g., GFS, Bigtable)
•  Aggregation tree architecture
•  Interoperability with Google's data management

 tools (e.g., MapReduce)

Query processing

•  Data model: ProtoBufs (~nested relational)
•  Select-project-aggregate (single scan)

– Most common class of interactive queries
– Aggregation within-record and cross-record
– Filtering based on within-record aggregates

•  Fault-tolerant execution
•  Approximations: count(distinct), top-k
•  Joins, temp tables, UDFs/TVFs, etc.
•  Limited support for recursive types

Record versus column oriented data

B

C D

E
*

*

*

. . .

record-
oriented

. . .
r1

r2 r1

r2
r1

r2

r1

r2

column-
oriented

Performance Breakdown comparing
record reads to column reads

columns
records

objects

fro
m

 re
co

rd
s

fro
m

 c
ol

um
ns

(a) read +
 decompress

(b) assemble
 records

(c) parse as
 objects

(d) read +
 decompress

(e) parse as
 objects

time (sec)

number of fields

query execution tree

. . .

. . .
. . .

storage layer (e.g., GFS)

. . .

. . .
. . . leaf servers

(with local
 storage)

intermediate
servers

root server

client

fault tolerance,
re-execution

Mixer tree

Example: count(*)

SELECT A, COUNT(B) FROM T
GROUP BY A
T = {/gfs/1, /gfs/2, …, /gfs/100000}

SELECT A, SUM(c)
FROM (R11 UNION ALL R110)
GROUP BY A

SELECT A, COUNT(B) AS c
FROM T11 GROUP BY A
T11 = {/gfs/1, …, /gfs/10000}

SELECT A, COUNT(B) AS c
FROM T12 GROUP BY A
T12 = {/gfs/10001, …, /gfs/20000}

SELECT A, COUNT(B) AS c
FROM T21 GROUP BY A
T21 = {/gfs/1}

. . .

. . .

0

1

2

R11 R12

File::PRead()

Widely used inside Google

•  Analysis of crawled web
 documents

•  Tracking install data for
 applications on Android Market

•  Crash reporting for Google
 products

•  OCR results from Google Books
•  Spam analysis
•  Debugging of map tiles on Google

 Maps

•  Tablet migrations in managed
 Bigtable instances

•  Results of tests run on Google's
 distributed build system

•  Disk I/O statistics for hundreds
 of thousands of disks

•  Resource monitoring for jobs
 run in Google's data centers

•  Symbols and dependencies in
 Google's codebase

Think Like a Parallel Collection
FlumeJava: Easy, Efficient data-parallel pipelines

Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams,
Robert R. Henry, Robert Bradshaw, Nathan Weizenbaum

PLDI’10
Most similar external application: Hadoop Cascading,
Pipes, Dryad/LINQ

Parallel Collections

•  PCollection<T>, PTable<K,V>:
(possibly huge) parallel collections

–  parallelDo(DoFn)  Map() equivalent
–  groupByKey()  Shuffle() equivalent
–  combineValues(CombineFn)  Combiner() / Reducer() equivalent
–  flatten(...)
–  readFile(...), writeToFile(...)

•  Work with Java data & control structures
–  join(...), count(), top(CompareFn,N), ...

PCollection<String> lines =
 readTextFileCollection("/gfs/data/shakes/hamlet.txt");
PCollection<DocInfo> docInfos =
 readRecordFileCollection("/gfs/webdocinfo/part-*",
 recordsOf(DocInfo.class));

Example: TopWords

readTextFile(“/gfs/corpus/*.txt”)
.parallelDo(new ExtractWordsFn())
.count()
.top(new OrderCountsFn(), 1000)
.parallelDo(new FormatCountFn())
.writeToTextFile(“cnts.txt”);

FlumeJava.run();

Deferred Evaluation &
The Execution Graph

•  Primitives, e.g., parallelDo(...), are “lazy”
–  Just append to execution graph
– Result PCollections are like “futures”

•  Other code, e.g., count(), is “eager”
–  “Inlined” down to primitives

• FlumeJava.run() “demands” evaluation
– Optimizes, then runs execution graph

Optimizer

•  Fuse trees of parallelDo operations into one
–  producer-consumer
–  co-consumers (“siblings”)
–  eliminate now-unused intermediate PCollections

•  Form MapReduces
–  pDo + gbk + cv + pDo 

MapShuffleCombineReduce (MSCR)
– multi-mapper, multi-reducer, multi-output

Initial pipeline

After sinking Flattens and lifting CombineValues

After ParallelDo fusion

After MSCR Fusion

Executor

•  Runs each optimized MSCR
–  If small data, runs locally, sequentially

•  develop and test in normal IDE
–  If large data, runs remotely, in parallel

•  Handles creating, deleting temp files
•  Supports fast re-execution

– Caches, reuses partial pipeline results

Experience

•  Released to Google users in May 2009
–  Now: hundreds of pipelines run by hundreds of users

every month
–  Pipelines process gigabytes  petabytes

•  Typically, find FlumeJava a lot easier to use than
MapReduce
–  Can exert control over optimizer and executor

if/when necessary
–  When things go wrong, lower abstraction levels intrude

Think Like a
{Vertex, Column, Parallel Collection}

Pregel: a system for large-scale graph processing
Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski

FlumeJava: Easy, Efficient data-parallel pipelines
Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry, Robert Bradshaw, Nathan Weizenbaum

Dremel: Interactive Analysis of Web-Scale Datasets
Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, Theo Vassilakis

David Konerding, Google Inc.

Conclusions

•  All tools are fault-tolerant by design- failure of
 individual nodes just slows down completion.

•  Work at large scale (trillions of rows, billions of
 vertices, petabytes of data).

•  Used by multiple groups inside Google.
•  We expect external developers will implement

 technologies similar to Pregel, Dremel and
 FlumeJava within Hadoop.

