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Google’s data-intensive parallel
 processing toolbox 

MapReduce is already well-known; external implementations are becoming 
popular in industry and academia. 

MR is not designed to handle many kinds of problems, so in the past few 
years we have developed new toolkits/frameworks for doing data-intensive 
parallel processing. 

Some common situations where we need alternatives: 
• Large graph operations with multiple steps. 
• Interactive tools for data analysts dealing with trillion-row datasets. 
• Pipelines with complex data flow 



Think Like a Vertex 
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Most similar existing framework: Parallel Boost Graph 



Model of graph computation 
Motivated by: 
Bulk Synchronous 
Parallel 
Valiant, CACM'90 

•  computation on local data (parallelism, !deadlock, !race) 
•  "batch&push" communication, no "pull" (!latency) 
•  message sending overlaps with computing 
•  synchronization barriers (programmability) halt 



Single-source shortest paths in Pregel 
class ShortestPathVertex : public Vertex<int, int, int> { 
 public:  
  virtual void Compute(MessageIterator* messages) { 
    int min_dist = IsSource(vertex_id()) ? 0 : INT_MAX; 
    for (; !messages->Done(); messages->Next()) { 
      min_dist = min(min_dist, messages->Value()); 
    } 
    if (min_dist < GetValue()) { 
      *MutableValue() = min_dist; 
      OutEdgeIterator iter = GetOutEdgeIterator(); 
      for (; !iter.Done(); iter.Next()) { 
        SendMessageTo(iter.Target(),  
                      min_dist + iter.GetValue()); 
      } 
    } 
    VoteToHalt(); 
  } 
}; vertex value is initialized 

to INT_MAX 



Implementation 

master 

worker worker worker 

Graph partitioned across workers. Partitions reside in workers' memory 

master: 
load graph, compute, 
checkpoint, restore, 
save, exit 

workers: 
register, 
report result 
of operation 



Fault-tolerance 

Daly, FGCS '06 :  

optimal time between 
checkpoints =  

sqrt(2 * C * M) - C 

C = [constant] 
checkpoint cost 

M = mean time to 
[Poisson] failure 



Usage of Pregel at Google 

Easy to program and expressive 

•  Breadth-first search 
•  Strongly connected components 
•  PageRank 
•  Label propagation algorithms 
•  Minimum spanning tree  
•  Δ-stepping parallelization of Dijkstra's SSSP algorithm 
•  Several kinds of vertex clustering 
•  Maximum and maximal weight bipartite matchings 
•  many more! 

Used in dozens of projects at Google 
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Most similar external application: Hadoop Pig 



Dremel 

•  Trillion-record, multi-terabyte datasets 
•  Scales to thousands of nodes 
•  Interactive speed 
•  Nested data 
•  Columnar storage and processing 
•  In situ data access (e.g., GFS, Bigtable) 
•  Aggregation tree architecture 
•  Interoperability with Google's data management

 tools (e.g., MapReduce) 



Query processing 

•  Data model: ProtoBufs (~nested relational) 
•  Select-project-aggregate (single scan) 

– Most common class of interactive queries 
– Aggregation within-record and cross-record 
– Filtering based on within-record aggregates 

•  Fault-tolerant execution 
•  Approximations: count(distinct), top-k 
•  Joins, temp tables, UDFs/TVFs, etc. 
•  Limited support for recursive types 



Record versus column oriented data 
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Performance Breakdown comparing 
record reads to column reads 
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query execution tree 
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. . . 

storage layer (e.g., GFS) 

. . . 

. . . 
. . . leaf servers 

(with local 
 storage) 

intermediate 
servers 

root server 

client 

fault tolerance, 
re-execution 

Mixer tree 



Example: count(*) 

SELECT A, COUNT(B) FROM T 
GROUP BY A 
T = {/gfs/1, /gfs/2, …, /gfs/100000} 

SELECT A, SUM(c) 
FROM (R11 UNION ALL R110) 
GROUP BY A 

SELECT A, COUNT(B) AS c 
FROM T11 GROUP BY A 
T11 = {/gfs/1, …, /gfs/10000} 

SELECT A, COUNT(B) AS c 
FROM T12 GROUP BY A 
T12 = {/gfs/10001, …, /gfs/20000} 

SELECT A, COUNT(B) AS c 
FROM T21 GROUP BY A 
T21 = {/gfs/1} 

. . . 

. . . 

0 

1 

2 

R11 R12 

File::PRead() 



Widely used inside Google 

•  Analysis of crawled web
 documents 

•  Tracking install data for
 applications on Android Market 

•  Crash reporting for Google
 products 

•  OCR results from Google Books 
•  Spam analysis 
•  Debugging of map tiles on Google

 Maps 

•  Tablet migrations in managed
 Bigtable instances 

•  Results of tests run on Google's
 distributed build system 

•  Disk I/O statistics for hundreds
 of thousands of disks 

•  Resource monitoring for jobs
 run in Google's data centers 

•  Symbols and dependencies in
 Google's codebase 



Think Like a Parallel Collection 
FlumeJava: Easy, Efficient data-parallel pipelines 

Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, 
Robert R. Henry, Robert Bradshaw, Nathan Weizenbaum  

PLDI’10 
Most similar external application: Hadoop Cascading, 
Pipes, Dryad/LINQ 



Parallel Collections 

•  PCollection<T>, PTable<K,V>: 
(possibly huge) parallel collections 

–  parallelDo(DoFn)      Map() equivalent 
–  groupByKey()    Shuffle() equivalent 
–  combineValues(CombineFn)   Combiner() / Reducer() equivalent 
–  flatten(...) 
–  readFile(...), writeToFile(...) 

•  Work with Java data & control structures 
–  join(...), count(),  top(CompareFn,N), ... 

PCollection<String> lines =  
  readTextFileCollection("/gfs/data/shakes/hamlet.txt"); 
PCollection<DocInfo> docInfos = 
  readRecordFileCollection("/gfs/webdocinfo/part-*",  
  recordsOf(DocInfo.class));  



Example: TopWords 

readTextFile(“/gfs/corpus/*.txt”) 
.parallelDo(new ExtractWordsFn()) 
.count() 
.top(new OrderCountsFn(), 1000) 
.parallelDo(new FormatCountFn()) 
.writeToTextFile(“cnts.txt”); 

FlumeJava.run(); 



Deferred Evaluation & 
The Execution Graph 

•  Primitives, e.g., parallelDo(...), are “lazy” 
–  Just append to execution graph 
– Result PCollections are like “futures” 

•  Other code, e.g., count(), is “eager” 
–  “Inlined” down to primitives 

• FlumeJava.run() “demands” evaluation 
– Optimizes, then runs execution graph 



Optimizer 

•  Fuse trees of parallelDo operations into one 
–  producer-consumer 
–  co-consumers (“siblings”) 
–  eliminate now-unused intermediate PCollections 

•  Form MapReduces 
–  pDo + gbk + cv + pDo  

MapShuffleCombineReduce (MSCR) 
– multi-mapper, multi-reducer, multi-output 



Initial pipeline 



After sinking Flattens and lifting CombineValues 



After ParallelDo fusion 



After MSCR Fusion 



Executor 

•  Runs each optimized MSCR 
–  If small data, runs locally, sequentially 

•  develop and test in normal IDE 
–  If large data, runs remotely, in parallel 

•  Handles creating, deleting temp files 
•  Supports fast re-execution 

– Caches, reuses partial pipeline results 



Experience 

•  Released to Google users in May 2009 
–  Now: hundreds of pipelines run by hundreds of users 

every month 
–  Pipelines process gigabytes  petabytes 

•  Typically, find FlumeJava a lot easier to use than 
MapReduce 
–  Can exert control over optimizer and executor 

if/when necessary 
–  When things go wrong, lower abstraction levels intrude 
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Conclusions 

•  All tools are fault-tolerant by design- failure of
 individual nodes just slows down completion. 

•  Work at large scale (trillions of rows, billions of
 vertices, petabytes of data). 

•  Used by multiple groups inside Google. 
•  We expect external developers will implement

 technologies similar to Pregel, Dremel and
 FlumeJava within Hadoop. 


