Towards Efficient, Dynamic
Parallelism for GPUs

Duance Merrill

Andrew Grimshaw
UNIVERSITY of VIRGINIA

GPU Stream Machine Model

« Many, many concurrent threads of execution

— All threads run the same program (kernel)
« SIMD + SMT

— Explicit control over memory storage hierarchy

» Registers, fast local shared per core, global DRAM

* Report card™*:

— Excels at:

» Flat data-parallelism (i.e., data-independent and statically-known data dependences)

— Needs work:

« Dynamic, irregular, and nested parallelism

**Lee et al. Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on
CPU and GPU. SIGARCH 2010.

UNIVERSITY 0f VIRGINIA

Report Card: CPU Territory

Algorithm Examples

Performance
Per mm?2

b—t

Algebra

* Sort, computational geometry, finance
— Modest control flow
— Sparse/Irregular data structures
— Irregular communication between elements

* CPU Territory
- General purpose features vital for software efficiency
— Latency sensitive applications

All dates, figures and product plans are preliminary and are subject to change
without notice. Copyright © Intel Corporation 2006

UNIVERSITY 0/ VIRGINIA

Integer (32-bit) Sorting Rates

DEVICE

Name

NVIDIA GTX 480
NVIDIA Tesla C2050
NVIDIA GTX 285
NVIDIA GTX 280
NVIDIA Tesla C1060
NVIDIA 9800 GTX+
NVIDIA 8800 GT
NVIDIA Quadro FX5600
Intel Knight's Ferry MIC
32-core**

Intel Core i7 quad-core **

Intel Core-2 quad-core**

KEY-VALUE RATE

CUDPP
Radix

(108 pairs / sec)

Our SRTS Radix
(speedup)

775
581
490
449
333
189
129
110

KEYS-ONLY RATE
(106 keys / sec)

CUDPP Our SRTS Radix
Radix (speedup)

1005
742
615
534
524
265
171
147

560

240

138

**Satish et al., "Fast Sort on CPUs, GPUs and Intel MIC Architectures,” Tech Report 2010.

Integer (32-bit) Sorting Rates

DEVICE

Name

NVIDIA GTX 480
NVIDIA Tesla C2050
NVIDIA GTX 285
NVIDIA GTX 280
NVIDIA Tesla C1060
NVIDIA 9800 GTX+
NVIDIA 8800 GT
NVIDIA Quadro FX5600
Intel Knight's Ferry MIC
32-core**

Intel Core i7 quad-core **

Intel Core-2 quad-core**

UNIV

KEY-VALUE RATE

CUDPP
Radix

(108 pairs / sec)

Our SRTS Radix
(speedup)

775
581
490
449
333
189
129
110

KEYS-ONLY RATE
(106 keys / sec)

CUDPP Our SRTS Radix
Radix (speedup)

1005
742
615
534
524
265
171
147

560

240

138

**S?_tils{r%(ftla{.,, (Eﬁ&\f??{qﬁ _qr“‘.RUs, GPUs and Intel MIC Architectures,“ Tech Report 2010.

Integer (32-bit) Sorting Rates

)
&
>
)
X
N}
(@)
H
N—
3
+~
o
oc
(@)}
<
=
o
e}
A

—GTX 480
C2050 (no ECC)
——GTX 285
C2050 (ECC)

GTX 280

—C1060

—9800 GTX+

0 16 32 48 64

UNIVERSITY 0f VIRGINIA

80

96

112 128 144 160 176 192 208

Problem size (millions)

224 240 256 272

Presentation Overview

« Performance Strategies

— Design patterns and idioms for program composition

« Challenges for the Programming Model

— Burdens these techniques place upon the programming model / toolkit

UNIVERSITY 0f VIRGINIA

Our Problem Scope:

Thread decompositions with variable and dynamic
output production

UNIVERSITY 0f VIRGINIA

(@) Single input dependence

R

Thread Thread Thread Thread

oo il

— Each output has a dependence upon a single input element

Threads are decomposed by output element

Input and output indices are static functions of thread-id

— E.g., scalar operations

UNIVERSITY 0f VIRGINIA

(b) Neighborhood input dependences

Thread Thread Thread Thread

oo il

— Each output has dependences upon a bounded subset of the input

Threads are decomposed by output element

The output (and at least one input) index is a static function of thread-id

— E.g., matrix / vector multiply

UNIVERSITY 0f VIRGINIA

(c) Global input dependences

-~ HANAENEEEREE

S T [T LLLLLT [[

— Each output element has dependences upon any / all input elements

— E.g., sorting, reduction, compaction, duplicate removal, histogram generation, etc.

UNIVERSITY 0f VIRGINIA

Composing global transformations

The GPU machine model is designed for (a) local and (b)
neighborhood transformations

— (c) globally-dependent transformations must be constructed from multiple
passes of Neighborhood transformations

The “straightforward” thread
decomposition:

— Threads are decomposed by output element
— Repeatedly iterate over recycled input streams

— Output stream size is statically known before
each pass

UNIVERSITY 0/ VIRGINIA

Sometimes facilitates work-optimal
methods

SR = R ese

n i
¥ ¥
W b
H BN

* E.g, reduction
— O(n) global work from passes of pairwise-neighbor-reduction

— Static dependences, uniform output

« E.g., Fast Fourier transform

UNIVERSITY 0f VIRGINIA

Sometimes only facilitates work-inefficient

methods

* E.g., sorting networks

— Repeated, deterministic pairwise
compare-smem

Bubble sort is O(n?)
Bitonic sort is O(nlog?n)
Want O(nlogn) comparison or O(kn) radix sorting

— Need partitioning: dynamic,
cooperative allocation

UNIVERSITY 0f VIRGINIA

E.g., graph traversal

— Repeatedly check each vertex or
edge
Such breadth-first search is O(V2)
Want O(V + E) BFS

Need queue: dynamic, cooperative
allocation

Sometimes is completely insufficient

 Nee | Be | | |
H wwEE " EE
HEEEE EEEE EwEE

\Eisss:::::§-~:lll ANEE EEEEN

wExE wE™H xEEN wEEN
EEEE EEwE EE-E EEEN
o' B e ! N o N oo |
BExEE HEwEE ExEE NaaE

" e N ool '@ e | Ne "oNe |
HEmE Elwey B EEaE MEEN AN Wl

o' N e/ N o "N o @ o | W @ | B o/
BEE NN EaEE NS BExEE ExEE ExEN

 E.g., parallel search space exploration

— Variable output per thread

— Need dynamic, cooperative allocation

UNIVERSITY 0f VIRGINIA

Sometimes is completely insufficient

 E.g., parallel search space exploration

— Variable output per thread

— Need dynamic, cooperative allocation

UNIVERSITY 0f VIRGINIA

Sometimes is completely insufficient

,,//

-HII N~EN wEEE

HEN EwEE EFEE
llll HREE EwEE
AENE AERE EEEE

 E.g., parallel search space exploration

— Variable output per thread

— Need dynamic, cooperative allocation

UNIVERSITY 0f VIRGINIA

e | Hee | He | |
1] [] -III e |
HEEE EEEE EwEE ErEE
EEEE IIII EEEE EnER

Sometimes is completely insufficient

--Il wEN wEEN [| Nee | Be | | |
HEN EwEE EFEE [] | H wwEE " EE
llll HEEE EwEN o HEEEE EEEE EwEE

.-::‘::;;;;5F!\ !!EEE:::::§~§~:III ANEE EEEEN

mExE wE™E wEEN wEEN wExE wE™H wEEN wEEN
HraE - wlE rfE ras EEEE EEwE EE-E EEEN
HwEE HuwEE EweE Ee"E o' B e ! N o N oo |
AENE RENE EERE ENwE BExEE HEwEE ExEE NaaE

HEN]1 HEK)
HEEEE NEEEN

 E.g., parallel search space exploration

— Variable output per thread

— Need dynamic, cooperative allocation

UNIVERSITY 0f VIRGINIA

Sometimes is completely insufficient

 Nee | Be | | |
H wwEE " EE
HEEEE EEEE EwEE

\Eisss:::::§-§:lll ANEE EEEEN

wEnE I E wEEN wEEN
EEEE NN EE-E EEEn
HrEE EFEE - wE e
BExEE NwEE ExEE NaaE ////

" e N ool '@

HEmE Elwey B EEaE

o' N e/ N o "N o @

BEE NN EaEE NS ExEE BxEE B

 E.g., parallel search space exploration

— Variable output per thread

— Need dynamic, cooperative allocation

UNIVERSITY 0f VIRGINIA

Sometimes is completely insufficient

 Nee | Be | | |
H wwEE " EE
HEEEE EEEE EwEE

\Eisss:::::§-~:lll ANEE EEEEN

wExE wE™H xEEN wEEN
EEEE EEwE EE-E EEEN
o' B e ! N o N oo |
BExEE HEwEE ExEE NaaE

" e N ool '@ e | Ne "oNe |
HEmE Elwey B EEaE MEEN AN Wl

o' N e/ N o "N o @ o | W @ | B o/
BEE NN EaEE NS BExEE ExEE ExEN

 E.g., parallel search space exploration

— Variable output per thread

— Need dynamic, cooperative allocation

UNIVERSITY 0f VIRGINIA

Dynamic, irregular, and nested
parallelism

 \What we want:

1. Work-optimal implementations for problems with dynamic
dependences...

2. ..that fit the machine model well

» Use alternative thread decomposition strategy:

— Input-centric decomposition

Input indices are a static function of thread-id, but output indices are
completely dynamic

— A generalized allocation problem

“I may write zero or more output items, and | need to cooperate with everyone
to figure out where they go”

— Need efficient means of reservation/allocation

Parallel prefix scan (and relaxations / generalizations)

UNIVERSITY 0f VIRGINIA

Prefix Scan

T]
Input (& allocation
requirement) 2 1 3 2
[T— I—
Resu/t of 2 3 8
prefix scan (sum)
5 6 7

« Each output index is computed to be the sum of the previous input
indices

— O(n) work
— For allocation: use scan results as a scattering vector

— Origins in adder circuitry, popularized as a parallel primitive by Blelloch et al. in the ‘90s

* Fits the GPU machine model well

— Merrill et al. Parallel Scan for Stream Architectures. Technical Report CS2009-14, Department of Computer Science,
University of Virginia. 2009

22

Prefix Scan

T]
Input (& allocation
requirement) 2 1 3 2
[T— I—
Resu/t of 2 3 8
prefix scan (sum)
5 6 7

Each output index is computed to be the sum of the previous input
indices

— O(n) work
— For allocation: use scan results as a scattering vector

— Origins in adder circuitry, popularized as a parallel primitive by Blelloch et al. in the ‘90s

Fits the GPU machine model well

— Merrill et al. Parallel Scan for Stream Architectures. Technical Report CS2009-14, Department of Computer Science,
University of Virginia. 2009

UNIVERSITY 0f VIRGINIA

Interactive portion of the talk
(Show of hands please)

« Taken (or taught) an OS course?
Had a unit on process synchronization?
Covered multiple producers and consumers?

Learned how to protect the queue with locks and mutexes?

Learned how to protect the queue with prefix-sum and barriers?

Mindset: cooperation ==threads+{ocks

UNIVERSITY 0f VIRGINIA

Prefix Scan for Radix Sorting
Key sequence @

0s 1s
riag vecrs (KN NN A I EN N RN KD
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Os 1s

il o| |1 (2(3] | W [4] |5| [e]7
(relocation offsets)
01 2 3 4 5 6 7 0 1 2 3 4

5 6 7

0] 1 2 K] 4 5 6 7

* For radix sorting passes
— 0/1-flag each key as having a digit of 0,1,2,3, etc.
— Scan flag vectors for radix r digits

— Relocate keys into bins for each digit

UNIVERSITY 0f VIRGINIA

Rernel Fusion

and the efficient prefix-scan “runtime”

UNIVERSITY 0f VIRGINIA

Kernel Fusion

S

Determine allocation size
Determine allocation
Scan
CUDPP scan '

CUDPP scan l
Distribute output \

Distribute output

Un-fused

Three concepts:

1. Propagate live data between orthogonal steps in fast registers / smem
2. Use scan (or variant) as a “runtime” for everything.

3. Heavy SMT (over-threading) yields usable “bubbles” of free computation

UNIVERSITY 0/ VIRGINIA

Kernel Fusion

S

Determine allocation size
Determine allocation
Scan
CUDPP scan '

CUDPP scan l
Distribute output \

Distribute output

Un-fused

Three concepts:

1. Propagate live data between orthogonal steps in fast registers / smem
2. Use scan (or variant) as a “runtime” for everything.

3. Heavy SMT (over-threading) yields usable “bubbles” of free computation

UNIVERSITY 0/ VIRGINIA

Read + Write Kernel Memory Wall

GTX285 r+w
memory wall
(17.8 instructions
per input word)

-~
<
Q
&
Q

Q
Q
<
(o]
Q
@

S

=

N

o

~
(%)
<

o)
]
[S)
S
L .,
-
17y
<

‘\é
(o]
Q

<

~

48 64

Problem Size (millions)

UNIVERSITY 0f VIRGINIA

... after data movement instructions

GTX285 r+w
memory wall
(17.8)

-~
<
Q
&
Q

Q
Q
<
(o]
Q
@

S

=

N

o

~
(%)
<

o)
]
[S)
S
L .,
-
17y
<

S
(o]
Q

<

~

Data Movement
Skeleton

48 64 96

Problem Size (millions)

UNIVERSITY 0f VIRGINIA

... after prefix-scan runtime

GTX285 r+w
memory wall
(17.8)

-~
<
Q
&
Q

Q
Q
<
(o]
Q
@

S

=

N

o

~
(%)
<

o)
]
[S)
S
L .,
-
17y
<

5
(o]
Q

<

~

SRTS Scan Kernel

Data Movement
Skeleton

UNIVERSITY 0f VIRGINIA

48 64 96

Problem Size (millions)

Know your kernel’s memory wall

— Being below the wall
gives you flexibility...
GTX285 r+w

memory wall
(17.8)

— .. for doing more local
work:

» Better granularity (e.g.,
increase redundant
computation, ghost cells,
radix bits, etc.)

Orthogonal kernel fusion
SRTS Scan Kernel

-~
c
Q
S
9]

QL
Q
[~
(o}
Q
s

.4:

<3

~N

o

N
(%)
<

e
=
(@)
=}
| .
-~
7
<

‘\6
(o}
\J)

<

~

Data Movement
Skeleton

48 64 96

Problem Size (millions)

UNIVERSITY 0f VIRGINIA

...Tor radix sorting

GTX285 Radix

— Partially-coalesced
Scatter Kernel Wall

writes (key scattering)

increase write overhead
by ~2x

— Bubble helps to

_ FREE WORK BUBBLE
accommodate:

+ Decoding key digits

« Additional local scatter
step in shared memory
before globally
scattering keys

SRTS Scan Kernel

Thread-Instructions / 32-bit scan element

Bigger granularity: four
total concurrent scan
operations (radix 16)

48 64

Problem Size (millions)

UNIVERSITY 0f VIRGINIA

Programming Model Challenges

* Poor functional abstraction

— Assingle host-side procedure call launches a kernel that performs orthogonal
program steps

MyUberKernel<<<grid size, num threads>>>(d device storage) ;

 Barriers to code reuse

— No existing public repositories of kernel “subroutines” for scavenging

UNIVERSITY 0f VIRGINIA

Programming Model Challenges
e I e)

v
v

Encode flag bit
into flag vectors

LOCAL MULTI-SCAN
flag vectors,
Decode local rank
from flag vectors
|
\4 ¢ v \4
EXCHANGE (key) EXCHANGE (value)
Extract radix digit (again)

Update global radix digit
partition offsets
\4 f V
——————

\ 4
SCATTER (value)
—-— e - -_—

* Fusion from higher-order kernel interfaces is limited

Fused radix sorting kernel

+ Digit extraction

* Local prefix scan

» Scatter accordingly

(
|
|
|
|
|
|
|
|
|
|
|
|
|
,
|
l

- -

— Callbacks, iterators, visitors, functors, etc.

E.g., ReduceKernel<<<grid size, num_ threads>>>(CountingIterator (100));

— Can’t express complex subroutine compositions

E.g., fused kernel above can’t be composed using a callback-based functor/visitor pattern

UNIVERSITY 0f VIRGINIA

Algorithm Serialization

Too much expressed parallelism is bad

UNIVERSITY 0f VIRGINIA

Decomposing problems as if you
had limitless CTAs

It's one of CUDA's biggest accessibility strengths...

— Virtual processors abstract a diversity of hardware configurations

... and one if its biggest performance weaknesses

— Leads to a host of inefficiencies

 Instead: Design kernels for a fixed grid-size

— E.g., only several hundred CTAs

UNIVERSITY 0f VIRGINIA

Example 1: Threadblock decomposition

Dynamic threadblock decomposition
grid-size = (N / tilesize) CTAs

]

Fixed threadblock decomposition

grid-size = 150 CTAs (or other small constant)

UNIVERSITY 0f VIRGINIA

threadblock

Benefits are many:

« Common work gets hoisted and reused, e.g.:
— Thread-dependent predicates
— Setup and initialization code (notably for smem)

— Offset calculations (notably for smem)
* No problem size limitations

» (Grid size becomes a tuning parameter

— Common values are hoisted and kept live

threadblock

UNIVERSITY 0f VIRGINIA

Example 2: Recursive threadblock
decomposition

| O A e o o o

||_|/|222

|
I éééé ST T T T Y sty | Ay | Ay | ey

10G jiesize (N) -level tree Two-level tree

« 2-level curries results in registers (or smem) between tiles. Elides:

— O(N/ tilesize) gmem accesses

— 2-4 instructions per access (offset calcs, load, store)

« 2-level only enacts a small, constant-sized inner tree

— GPU is least efficient here: get it over with as quick as possible

UNIVERSITY 0f VIRGINIA

Overheads In Action
(prefix scan)

[EEY
(@)}

[EEY
N

Compute Load

(0]

=) 85 Scan Kernel
WELl

-
C
Q
&
Q
w
N
7
c
O
5
Q
S
g
4
17
S
]
o)
(e
Q
<
~

I

1000 2000 3000 4000 5000 6000 7000 8000 9000
Grid Size (# of threadblocks)

UNIVERSITY 0f VIRGINIA

Warp-synchronous Programming

Too much expressed parallelism is bad (part 2)

UNIVERSITY 0f VIRGINIA

Want hybrid algorithms composed of different phases

my m, my my m, mg me m

« E.g., local parallel prefix sum:
— SIMD lanes wasted on O(n)-work Brent Kung (left), but less work when n > warp size

— Kogge-Stone (right) is O(n log n)-work, but faster when n < warp size

UNIVERSITY 0/ VIRGINIA

Want hybrid algorithms composed of different phases

my m, my my m, mg me m

« E.g., local parallel prefix sum:
— SIMD lanes wasted on O(n)-work Brent Kung (left), but less work when n > warp size

— Kogge-Stone (right) is O(n log n)-work, but faster when n < warp size

UNIVERSITY 0/ VIRGINIA

Warp-synchronous + Algorithm Serialization
(e.g., reduction)

barrier

Tree-based:

Vs. raking-based: barrier é% i //_ ?7?/ _?//

¢ ¢ =

PN\ ST
>0-0 ¢

1

UNIVERSITY 0f VIRGINIA

Warp-synchronous + Algorithm Serialization
(e.g., reduction)

barrier

Tree-based:

Vs. raking-based: barrier é% i //_ ?7?/ _?//

¢ ¢ =

PN\ ST
>0-0 ¢

1

UNIVERSITY 0f VIRGINIA

Diverse Warp Jobs

« Communication between threads is expensive

— Barriers make O(n) code O(n log n)

* One or two “worker warps”
— The rest are “DMA engine” threads

— Use threadblocks to cover pipeline latencies, e.g., Fermi SMs occupied by

2 worker warps per CTA
6-7 CTAs

UNIVERSITY 0f VIRGINIA

Meta-programming

Improper granularity == performance cliff

UNIVERSITY 0f VIRGINIA

Specialize target code for given devices

» Optimal granularity is different for:
— Different SMs (varied local storage: registers/smem)

— Different input types (e.g., sorting chars vs. ulongs)

* Author a single source implementation
— # of steps for each algorithm phase is configuration-driven

— Template expansion + Constant-propagation + Static loop unrolling +
Preprocessor Macros

— Compiler produces a target assembly that is well-tuned for the specifically
targeted hardware and problem

UNIVERSITY 0f VIRGINIA

E.g.: Scattering vector-2 pairs of keys to their
binned destinations

SM20_ PAIRS PER TILE () (4) // 4 pairs on GF100
SM12 PAIRS PER TILE () (2) // 2 pair on GT200
SM10_PAIRS PER TILE() (1) // 1 pairs on G80
PAIRS PER TILE (version) ((version >= 200) ? SM20_ PAIRS PER TILE ()
(version >= 120) ? SM12 PAIRS PER TILE ()
SM10 PAIRS PER TILE())

< KeyType, PAIRS>

ScatterRankedKeys (
KeyType *d_out_keys,
VecType<KeyType, 2>::Type pairs[PAIRS],
ranks [PAIRS])

(PAIR = 0; PAIR < PAIRS; PAIR++) {
d out_keys[rank[PAIR].x] = pairs[PAIR].x;
d out keys[rank[PAIR].y] = pairs[PAIR].y;

ScatterRankedKeys< , PAIRS PER TILE(__ CUDA ARCH__)> (d_out keys, pairs, ranks);

Programming Model Challenges Pt. Il

« Templates have logistical problems

— Compiled libraries suffer from code bloat
CUDPP primitives library is 100s of MBs, yet still doesn’t support all built-in numeric types.

Specializing for device configurations makes it even worse

— The alternative is to ship source for #include’ing

Have to be willing to share source

— Need a way to fit meta-programming in at the JIT / bytecode level to help
avoid expansion / mismatch-by-omission

« Serializing algorithms is more than just “blocking”

— Can leverage fundamentally different algorithms for different phases

How to teach the compiler do to this?

UNIVERSITY 0f VIRGINIA

Summary

« Cooperative allocation crucial for dynamic parallelism

« Performance Strategies
— Resource-allocation as runtime
Kernel fusion
Algorithm serialization
Warp-synchronous programming

— Flexible granularity via meta-programming

« Challenges for the Programming Model
— Poor functional abstraction

— Little code-reuse

— How to ship/deploy flexible code (avoid code bloat)

UNIVERSITY 0f VIRGINIA

Questions?
{dgm4d, grimshaw} @ virginia.edu

UNIVERSITY 0f VIRGINIA

