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GPU Stream Machine Model

« Many, many concurrent threads of execution

— All threads run the same program (kernel)
« SIMD + SMT

— Explicit control over memory storage hierarchy

» Registers, fast local shared per core, global DRAM

* Report card™*:

— Excels at:

» Flat data-parallelism (i.e., data-independent and statically-known data dependences)

— Needs work:

« Dynamic, irregular, and nested parallelism

**Lee et al. Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on
CPU and GPU. SIGARCH 2010.
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Report Card: CPU Territory

Algorithm Examples

Performance
Per mm?2

b—t

Algebra

* Sort, computational geometry, finance
— Modest control flow
— Sparse/Irregular data structures
— Irregular communication between elements

* CPU Territory
- General purpose features vital for software efficiency
— Latency sensitive applications

All dates, figures and product plans are preliminary and are subject to change
without notice. Copyright © Intel Corporation 2006
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Integer (32-bit) Sorting Rates

DEVICE

Name

NVIDIA GTX 480
NVIDIA Tesla C2050
NVIDIA GTX 285
NVIDIA GTX 280
NVIDIA Tesla C1060
NVIDIA 9800 GTX+
NVIDIA 8800 GT
NVIDIA Quadro FX5600
Intel Knight's Ferry MIC
32-core**

Intel Core i7 quad-core **

Intel Core-2 quad-core**

KEY-VALUE RATE

CUDPP
Radix

(108 pairs / sec)

Our SRTS Radix
(speedup)

775
581
490
449
333
189
129
110

KEYS-ONLY RATE
(106 keys / sec)

CUDPP Our SRTS Radix
Radix (speedup)

1005
742
615
534
524
265
171
147

560

240

138

**Satish et al., "Fast Sort on CPUs, GPUs and Intel MIC Architectures,” Tech Report 2010.
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Integer (32-bit) Sorting Rates
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Presentation Overview

« Performance Strategies

— Design patterns and idioms for program composition

« Challenges for the Programming Model

— Burdens these techniques place upon the programming model / toolkit
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Our Problem Scope:

Thread decompositions with variable and dynamic
output production
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(@) Single input dependence

R

Thread Thread Thread Thread

oo il

— Each output has a dependence upon a single input element

Threads are decomposed by output element

Input and output indices are static functions of thread-id

— E.g., scalar operations
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(b) Neighborhood input dependences

Thread Thread Thread Thread

oo il

— Each output has dependences upon a bounded subset of the input

Threads are decomposed by output element

The output (and at least one input) index is a static function of thread-id

— E.g., matrix / vector multiply
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(c) Global input dependences
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— Each output element has dependences upon any / all input elements

— E.g., sorting, reduction, compaction, duplicate removal, histogram generation, etc.
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Composing global transformations

The GPU machine model is designed for (a) local and (b)
neighborhood transformations

— (c) globally-dependent transformations must be constructed from multiple
passes of Neighborhood transformations

The “straightforward” thread
decomposition:

— Threads are decomposed by output element
— Repeatedly iterate over recycled input streams

— Output stream size is statically known before
each pass
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Sometimes facilitates work-optimal
methods

SR = R ese

n i
¥ ¥
W b
H BN

* E.g, reduction
— O(n) global work from passes of pairwise-neighbor-reduction

— Static dependences, uniform output

« E.g., Fast Fourier transform
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Sometimes only facilitates work-inefficient

methods

* E.g., sorting networks

— Repeated, deterministic pairwise
compare-smem

Bubble sort is O(n?)
Bitonic sort is O(nlog?n)
Want O(nlogn) comparison or O(kn) radix sorting

— Need partitioning: dynamic,
cooperative allocation
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E.g., graph traversal

— Repeatedly check each vertex or
edge
Such breadth-first search is O(V2)
Want O(V + E) BFS

Need queue: dynamic, cooperative
allocation




Sometimes is completely insufficient
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 E.g., parallel search space exploration

— Variable output per thread

— Need dynamic, cooperative allocation
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 E.g., parallel search space exploration

— Variable output per thread
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Dynamic, irregular, and nested
parallelism

 \What we want:

1. Work-optimal implementations for problems with dynamic
dependences...

2. ..that fit the machine model well

» Use alternative thread decomposition strategy:

— Input-centric decomposition

Input indices are a static function of thread-id, but output indices are
completely dynamic

— A generalized allocation problem

“I may write zero or more output items, and | need to cooperate with everyone
to figure out where they go”

— Need efficient means of reservation/allocation

Parallel prefix scan (and relaxations / generalizations)
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Prefix Scan

T ]
Input ( & allocation
requirement) 2 1 3 2
[T— I—
Resu/t of 2 3 8
prefix scan (sum)
5 6 7

« Each output index is computed to be the sum of the previous input
indices

— O(n) work
— For allocation: use scan results as a scattering vector

— Origins in adder circuitry, popularized as a parallel primitive by Blelloch et al. in the ‘90s

* Fits the GPU machine model well

—  Merrill et al. Parallel Scan for Stream Architectures. Technical Report CS2009-14, Department of Computer Science,
University of Virginia. 2009
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Interactive portion of the talk
(Show of hands please)

« Taken (or taught) an OS course?
Had a unit on process synchronization?
Covered multiple producers and consumers?

Learned how to protect the queue with locks and mutexes?

Learned how to protect the queue with prefix-sum and barriers?

Mindset: cooperation ==threads+{ocks
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Prefix Scan for Radix Sorting
Key sequence @

0s 1s
riag vecrs (KN NN A I EN N RN KD
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Os 1s

il o| |1 (2(3] | W [4] |5|  [e]7
(relocation offsets)
01 2 3 4 5 6 7 0 1 2 3 4

5 6 7

0] 1 2 K] 4 5 6 7

* For radix sorting passes
— 0/1-flag each key as having a digit of 0,1,2,3, etc.
— Scan flag vectors for radix r digits

— Relocate keys into bins for each digit
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Rernel Fusion

and the efficient prefix-scan “runtime”
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Kernel Fusion

S

Determine allocation size
Determine allocation
Scan
CUDPP scan '

CUDPP scan l
Distribute output \

Distribute output

Un-fused

Three concepts:

1. Propagate live data between orthogonal steps in fast registers / smem
2. Use scan (or variant) as a “runtime” for everything.

3. Heavy SMT (over-threading) yields usable “bubbles” of free computation
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Read + Write Kernel Memory Wall

GTX285 r+w
memory wall
(17.8 instructions
per input word)
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... after data movement instructions

GTX285 r+w
memory wall
(17.8)
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... after prefix-scan runtime

GTX285 r+w
memory wall
(17.8)
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SRTS Scan Kernel

Data Movement
Skeleton
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Know your kernel’s memory wall

— Being below the wall
gives you flexibility...
GTX285 r+w

memory wall
(17.8)

— .. for doing more local
work:

» Better granularity (e.g.,
increase redundant
computation, ghost cells,
radix bits, etc.)

Orthogonal kernel fusion
SRTS Scan Kernel
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...Tor radix sorting

GTX285 Radix

— Partially-coalesced
Scatter Kernel Wall

writes (key scattering)

increase write overhead
by ~2x

— Bubble helps to

_ FREE WORK BUBBLE
accommodate:

+ Decoding key digits

« Additional local scatter
step in shared memory
before globally
scattering keys

SRTS Scan Kernel

Thread-Instructions / 32-bit scan element

Bigger granularity: four
total concurrent scan
operations (radix 16)

48 64

Problem Size (millions)
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Programming Model Challenges

* Poor functional abstraction

— Assingle host-side procedure call launches a kernel that performs orthogonal
program steps

MyUberKernel<<<grid size, num threads>>>(d device storage) ;

 Barriers to code reuse

— No existing public repositories of kernel “subroutines” for scavenging
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Programming Model Challenges
e I e )

v
v

Encode flag bit
into flag vectors

LOCAL MULTI-SCAN
flag vectors,
Decode local rank
from flag vectors
|
\4 ¢ v \4
EXCHANGE (key) EXCHANGE (value)
Extract radix digit (again)

Update global radix digit
partition offsets
\4 f V
——————

\ 4
SCATTER (value)
—-— e - -_—

* Fusion from higher-order kernel interfaces is limited

Fused radix sorting kernel

+ Digit extraction

* Local prefix scan

» Scatter accordingly

(
|
|
|
|
|
|
|
|
|
|
|
|
|
,
|
l

- -

— Callbacks, iterators, visitors, functors, etc.

E.g., ReduceKernel<<<grid size, num_ threads>>>(CountingIterator (100));

— Can’t express complex subroutine compositions

E.g., fused kernel above can’t be composed using a callback-based functor/visitor pattern
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Algorithm Serialization

Too much expressed parallelism is bad
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Decomposing problems as if you
had limitless CTAs

It's one of CUDA's biggest accessibility strengths...

— Virtual processors abstract a diversity of hardware configurations

... and one if its biggest performance weaknesses

— Leads to a host of inefficiencies

 Instead: Design kernels for a fixed grid-size

— E.g., only several hundred CTAs
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Example 1: Threadblock decomposition

Dynamic threadblock decomposition
grid-size = (N / tilesize) CTAs

]

Fixed threadblock decomposition

grid-size = 150 CTAs (or other small constant)
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Benefits are many:

« Common work gets hoisted and reused, e.g.:
— Thread-dependent predicates
— Setup and initialization code (notably for smem)

— Offset calculations (notably for smem)
* No problem size limitations

» (Grid size becomes a tuning parameter

— Common values are hoisted and kept live

threadblock
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Example 2: Recursive threadblock
decomposition

| O A e o o o

||_|/|222

|
I éééé ST T T T Y sty | Ay | Ay | ey

10G jiesize (N) -level tree Two-level tree

« 2-level curries results in registers (or smem) between tiles. Elides:

— O( N/ tilesize) gmem accesses

— 2-4 instructions per access (offset calcs, load, store)

« 2-level only enacts a small, constant-sized inner tree

— GPU is least efficient here: get it over with as quick as possible
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Overheads In Action
(prefix scan)
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Warp-synchronous Programming

Too much expressed parallelism is bad (part 2)
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Want hybrid algorithms composed of different phases

my m, my my m, mg me m

« E.g., local parallel prefix sum:
— SIMD lanes wasted on O(n)-work Brent Kung (left), but less work when n > warp size

— Kogge-Stone (right) is O(n log n)-work, but faster when n < warp size
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Warp-synchronous + Algorithm Serialization
(e.g., reduction)

barrier

Tree-based:

Vs. raking-based: barrier é% i //_ ?7?/ _?//

¢ ¢ =

PN\ ST
>0-0 ¢

1
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Diverse Warp Jobs

« Communication between threads is expensive

— Barriers make O(n) code O(n log n)

* One or two “worker warps”
— The rest are “DMA engine” threads

— Use threadblocks to cover pipeline latencies, e.g., Fermi SMs occupied by

2 worker warps per CTA
6-7 CTAs
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Meta-programming

Improper granularity == performance cliff
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Specialize target code for given devices

» Optimal granularity is different for:
— Different SMs (varied local storage: registers/smem)

— Different input types (e.g., sorting chars vs. ulongs)

* Author a single source implementation
— # of steps for each algorithm phase is configuration-driven

— Template expansion + Constant-propagation + Static loop unrolling +
Preprocessor Macros

— Compiler produces a target assembly that is well-tuned for the specifically
targeted hardware and problem
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E.g.: Scattering vector-2 pairs of keys to their
binned destinations

SM20_ PAIRS PER TILE () (4) // 4 pairs on GF100
SM12 PAIRS PER TILE () (2) // 2 pair on GT200
SM10_PAIRS PER TILE() (1) // 1 pairs on G80
PAIRS PER TILE (version) ((version >= 200) ? SM20_ PAIRS PER TILE ()
(version >= 120) ? SM12 PAIRS PER TILE ()
SM10 PAIRS PER TILE())

< KeyType, PAIRS>

ScatterRankedKeys (
KeyType *d_out_keys,
VecType<KeyType, 2>::Type pairs[PAIRS],
ranks [PAIRS])

( PAIR = 0; PAIR < PAIRS; PAIR++) {
d out_keys[rank[PAIR].x] = pairs[PAIR].x;
d out keys[rank[PAIR].y] = pairs[PAIR].y;

ScatterRankedKeys< , PAIRS PER TILE(__ CUDA ARCH__)> (d_out keys, pairs, ranks);




Programming Model Challenges Pt. Il

« Templates have logistical problems

— Compiled libraries suffer from code bloat
CUDPP primitives library is 100s of MBs, yet still doesn’t support all built-in numeric types.

Specializing for device configurations makes it even worse

— The alternative is to ship source for #include’ing

Have to be willing to share source

— Need a way to fit meta-programming in at the JIT / bytecode level to help
avoid expansion / mismatch-by-omission

« Serializing algorithms is more than just “blocking”

— Can leverage fundamentally different algorithms for different phases

How to teach the compiler do to this?
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Summary

« Cooperative allocation crucial for dynamic parallelism

« Performance Strategies
— Resource-allocation as runtime
Kernel fusion
Algorithm serialization
Warp-synchronous programming

— Flexible granularity via meta-programming

« Challenges for the Programming Model
— Poor functional abstraction

— Little code-reuse

— How to ship/deploy flexible code (avoid code bloat)
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Questions?
{dgm4d, grimshaw} @ virginia.edu
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