

Towards Efficient, Dynamic Parallelism for GPUs

Duane Merrill Andrew Grimshaw

GPU Stream Machine Model

- Many, many concurrent threads of execution
 - All threads run the same program (kernel)
 - SIMD + SMT
 - Explicit control over memory storage hierarchy
 - Registers, fast local shared per core, global DRAM
- Report card**:
 - Excels at:
 - Flat data-parallelism (i.e., data-independent and statically-known data dependences)
 - Needs work:
 - Dynamic, irregular, and nested parallelism

^{**}Lee et al. Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU. SIGARCH 2010.

Report Card: CPU Territory

Algorithm Examples

- · Sort, computational geometry, finance
 - Modest control flow
 - Sparse/Irregular data structures
 - Irregular communication between elements
- CPU Territory
 - General purpose features vital for software efficiency
 - Latency sensitive applications

All dates, figures and product plans are preliminary and are subject to change without notice. Copyright © Intel Corporation 2006

Integer (32-bit) Sorting Rates

DEVICE	KEY-VALUE RATE (10 ⁶ pairs / sec)			KEYS-ONLY RATE (10 ⁶ keys / sec)			
Name	CUDPP Radix	Our SRTS Radix (speedup)		CUDPP Radix	Our SRTS Radix (speedup)		
NVIDIA GTX 480		775			1005		
NVIDIA Tesla C2050		581			742		
NVIDIA GTX 285	134	490 (3.	7x)	199	615	(2.8x)	
NVIDIA GTX 280	117	449 (3.	8x)	184	534	(2.6x)	
NVIDIA Tesla C1060	111	333 (3.	0x)	176	524	(2.7x)	
NVIDIA 9800 GTX+	82	189 (2.	0x)	111	265	(2.0x)	
NVIDIA 8800 GT	63	129 (2.	1x)	83	171	(2.1x)	
NVIDIA Quadro FX5600	55	110 (2.	0x)	66	147	(2.2x)	
Intel Knight's Ferry MIC 32-core**					560		
Intel Core i7 quad-core **				240			
Intel Core-2 quad-core**	138						

^{**}Satish et al., "Fast Sort on CPUs, GPUs and Intel MIC Architectures," Tech Report 2010.

Integer (32-bit) Sorting Rates

DEVICE	KEY-VALUE RATE (10 ⁶ pairs / sec)			KEYS-ONLY RATE (10 ⁶ keys / sec)			
Name	CUDPP Radix	Our SRTS Radix (speedup)		CUDPP Radix	Our SRTS Radix (speedup)		
NVIDIA GTX 480		775			1005		
NVIDIA Tesla C2050		581			742		
NVIDIA GTX 285	134	490	(3.7x)	199	615	(2.8x)	
NVIDIA GTX 280	117	449	(3.8x)	184	534	(2.6x)	
NVIDIA Tesla C1060	111	333	(3.0x)	176	524	(2.7x)	
NVIDIA 9800 GTX+	82	189	(2.0x)	111	265	(2.0x)	
NVIDIA 8800 GT	63	129	(2.1x)	83	171	(2.1x)	
NVIDIA Quadro FX5600	55	110	(2.0x)	66	147	(2.2x)	
Intel Knight's Ferry MIC 32-core**					560		
Intel Core i7 quad-core **				240			
Intel Core-2 quad-core**				138			

Integer (32-bit) Sorting Rates

Presentation Overview

- Performance Strategies
 - Design patterns and idioms for program composition
- Challenges for the Programming Model
 - Burdens these techniques place upon the programming model / toolkit

Our Problem Scope:

Thread decompositions with variable and dynamic output production

(a) Single input dependence

- Each output has a dependence upon a single input element
 - Threads are decomposed by output element
 - · Input and output indices are static functions of thread-id
- E.g., scalar operations

(b) Neighborhood input dependences

- Each output has dependences upon a bounded subset of the input
 - Threads are decomposed by output element
 - · The output (and at least one input) index is a static function of thread-id
- E.g., matrix / vector multiply

(c) Global input dependences

- Each output element has dependences upon any / all input elements
- E.g., sorting, reduction, compaction, duplicate removal, histogram generation, etc.

Composing global transformations

- The GPU machine model is designed for (a) local and (b) neighborhood transformations
 - (c) globally-dependent transformations must be constructed from multiple passes of Neighborhood transformations
- The "straightforward" thread decomposition:
 - Threads are decomposed by output element
 - Repeatedly iterate over recycled input streams
 - Output stream size is statically known before each pass

Sometimes facilitates work-optimal methods

- E.g, reduction
 - O(n) global work from passes of pairwise-neighbor-reduction
 - Static dependences, uniform output
- E.g., Fast Fourier transform

Problem: Sometimes only facilitates work-inefficient methods

- E.g., sorting networks
 - Repeated, deterministic pairwise compare-smem
 - Bubble sort is $O(n^2)$
 - Bitonic sort is $O(n\log^2 n)$
 - Want $O(n\log n)$ comparison or O(kn) radix sorting
 - Need partitioning: dynamic, cooperative allocation

- E.g., graph traversal
 - Repeatedly check each vertex or edge
 - Such breadth-first search is $O(V^2)$
 - Want *O*(*V* + *E*) BFS
 - Need queue: dynamic, cooperative allocation

- E.g., parallel search space exploration
 - Variable output per thread
 - Need dynamic, cooperative allocation

- E.g., parallel search space exploration
 - Variable output per thread
 - Need dynamic, cooperative allocation

- E.g., parallel search space exploration
 - Variable output per thread
 - Need dynamic, cooperative allocation

- E.g., parallel search space exploration
 - Variable output per thread
 - Need dynamic, cooperative allocation

- E.g., parallel search space exploration
 - Variable output per thread
 - Need dynamic, cooperative allocation

- E.g., parallel search space exploration
 - Variable output per thread
 - Need dynamic, cooperative allocation

Dynamic, irregular, and nested parallelism

- What we want:
 - 1. Work-optimal implementations for problems with dynamic dependences...
 - 2. ...that fit the machine model well
- Use alternative thread decomposition strategy:
 - Input-centric decomposition
 - Input indices are a static function of thread-id, but output indices are completely dynamic
 - A generalized allocation problem
 - "I may write zero or more output items, and I need to cooperate with everyone to figure out <u>where</u> they go"
 - Need efficient means of reservation/allocation
 - Parallel prefix scan (and relaxations / generalizations)

Prefix Scan

- Each output index is computed to be the sum of the previous input indices
 - O(n) work
 - For allocation: use scan results as a scattering vector
 - Origins in adder circuitry, popularized as a parallel primitive by Blelloch et al. in the '90s
- Fits the GPU machine model well
 - Merrill et al. Parallel Scan for Stream Architectures. Technical Report CS2009-14, Department of Computer Science, University of Virginia. 2009

Prefix Scan

- Each output index is computed to be the sum of the previous input indices
 - O(n) work
 - For allocation: use scan results as a scattering vector
 - Origins in adder circuitry, popularized as a parallel primitive by Blelloch et al. in the '90s
- Fits the GPU machine model well
 - Merrill et al. Parallel Scan for Stream Architectures. Technical Report CS2009-14, Department of Computer Science, University of Virginia. 2009

Interactive portion of the talk

(Show of hands please)

- Taken (or taught) an OS course?
- Had a unit on process synchronization?
- Covered multiple producers and consumers?
- Learned how to protect the queue with locks and mutexes?
- Learned how to protect the queue with prefix-sum and barriers?
- Mindset: cooperation == threads + locks

Prefix Scan for Radix Sorting

For radix sorting passes

- 0/1-flag each key as having a digit of 0,1,2,3, etc.
- Scan flag vectors for radix r digits
- Relocate keys into bins for each digit

Kernel Fusion

and the efficient prefix-scan "runtime"

Kernel Fusion

Un-fused Fused

- Three concepts:
 - 1. Propagate live data between orthogonal steps in fast registers / smem
 - 2. Use scan (or variant) as a "runtime" for everything.
 - 3. Heavy SMT (over-threading) yields usable "bubbles" of free computation

Kernel Fusion

Un-fused Fused

- Three concepts:
 - 1. Propagate live data between orthogonal steps in fast registers / smem
 - 2. Use scan (or variant) as a "runtime" for everything.
 - 3. Heavy SMT (over-threading) yields usable "bubbles" of free computation

Read + Write Kernel Memory Wall

... after data movement instructions

... after prefix-scan runtime

Know your kernel's memory wall

- Being below the wall gives you flexibility...
- .. for doing more local work:
 - Better granularity (e.g., increase redundant computation, ghost cells, radix bits, etc.)
 - Orthogonal kernel fusion

...for radix sorting

- Partially-coalesced writes (key scattering) increase write overhead by ~2x
- Bubble helps to accommodate:
 - · Decoding key digits
 - Additional local scatter step in shared memory before globally scattering keys
 - Bigger granularity: four total concurrent scan operations (radix 16)

Programming Model Challenges

- Poor functional abstraction
 - A single host-side procedure call launches a kernel that performs orthogonal program steps

```
MyUberKernel<<<grid_size, num_threads>>>(d_device_storage);
```

- Barriers to code reuse
 - No existing public repositories of kernel "subroutines" for scavenging

Programming Model Challenges

Fused radix sorting kernel

- Digit extraction
- Local prefix scan
- Scatter accordingly

- Fusion from higher-order kernel interfaces is limited
 - Callbacks, iterators, visitors, functors, etc.
 - E.g., ReduceKernel << < grid size, num threads >>> (CountingIterator(100));
 - Can't express complex subroutine compositions
 - E.g., fused kernel above can't be composed using a callback-based functor/visitor pattern

Algorithm Serialization

Too much expressed parallelism is bad

Decomposing problems as if you had limitless CTAs

It's one of CUDA's biggest accessibility strengths...

Virtual processors abstract a diversity of hardware configurations

... and one if its biggest performance weaknesses

- Leads to a host of inefficiencies
- Instead: Design kernels for a fixed grid-size
 - E.g., only several hundred CTAs

Example 1: Threadblock decomposition

Benefits are many:

- Common work gets hoisted and reused, e.g.:
 - Thread-dependent predicates
 - Setup and initialization code (notably for smem)
 - Offset calculations (notably for smem)
- No problem size limitations
- Grid size becomes a tuning parameter
- Increased register pressure
 - Common values are hoisted and kept live

Example 2: Recursive threadblock decomposition

- 2-level curries results in registers (or smem) between tiles. Elides:
 - O(N / tilesize) gmem accesses
 - 2-4 instructions per access (offset calcs, load, store)
- 2-level only enacts a small, constant-sized inner tree
 - GPU is least efficient here: get it over with as quick as possible

Overheads In Action (prefix scan)

Warp-synchronous Programming

Too much expressed parallelism is bad (part 2)

Want hybrid algorithms composed of different phases

- E.g., local parallel prefix sum:
 - SIMD lanes wasted on O(n)-work Brent Kung (left), but less work when n > warp size
 - Kogge-Stone (right) is $O(n \log n)$ -work, but faster when $n \le warp$ size

Want hybrid algorithms composed of different phases

- E.g., local parallel prefix sum:
 - SIMD lanes wasted on O(n)-work Brent Kung (left), but less work when n > warp size
 - Kogge-Stone (right) is $O(n \log n)$ -work, but faster when $n \le warp$ size

Warp-synchronous + Algorithm Serialization (e.g., reduction)

Tree-based:

Vs. raking-based:

University of Virginia

Warp-synchronous + Algorithm Serialization (e.g., reduction)

Tree-based:

Vs. raking-based:

University of Virginia

Diverse Warp Jobs

- Communication between threads is expensive
 - Barriers make O(n) code $O(n \log n)$
- One or two "worker warps"
 - The rest are "DMA engine" threads
 - Use threadblocks to cover pipeline latencies, e.g., Fermi SMs occupied by
 - 2 worker warps per CTA
 - 6-7 CTAs

Meta-programming

Improper granularity == performance cliff

Specialize target code for given devices

- Optimal granularity is different for:
 - Different SMs (varied local storage: registers/smem)
 - Different input types (e.g., sorting chars vs. ulongs)
- Author a single source implementation
 - # of steps for each algorithm phase is configuration-driven
 - Template expansion + Constant-propagation + Static loop unrolling + Preprocessor Macros
 - Compiler produces a target assembly that is well-tuned for the specifically targeted hardware and problem

E.g.: Scattering vector-2 pairs of keys to their binned destinations

```
#define SM20 PAIRS PER TILE()(4)  // 4 pairs on GF100
#define SM12 PAIRS PER TILE()(2) // 2 pair on GT200
#define SM10 PAIRS PER TILE()(1)
                                     // 1 pairs on G80
#define PAIRS PER TILE(version)((version >= 200) ? SM20 PAIRS PER TILE() : \
                               (version >= 120) ? SM12 PAIRS PER TILE() : \
                        SM10 PAIRS PER TILE())
template <typename KeyType, uint PAIRS>
     device forceinline
void ScatterRankedKeys(
      KeyType *d out keys,
      typename VecType<KeyType, 2>::Type pairs[PAIRS],
      uint2 ranks[PAIRS])
   #pragma unroll
   for (uint PAIR = 0; PAIR < PAIRS; PAIR++) {</pre>
      d out keys[rank[PAIR].x] = pairs[PAIR].x;
      d out keys[rank[PAIR].y] = pairs[PAIR].y;
ScatterRankedKeys<float, PAIRS PER TILE( CUDA ARCH )> (d out keys, pairs, ranks);
```

Programming Model Challenges Pt. II

- Templates have logistical problems
 - Compiled libraries suffer from code bloat
 - CUDPP primitives library is 100s of MBs, yet still doesn't support all built-in numeric types.
 - Specializing for device configurations makes it even worse
 - The alternative is to ship source for #include'ing
 - · Have to be willing to share source
 - Need a way to fit meta-programming in at the JIT / bytecode level to help avoid expansion / mismatch-by-omission
- Serializing algorithms is more than just "blocking"
 - Can leverage fundamentally different algorithms for different phases
 - How to teach the compiler do to this?

Summary

- Cooperative allocation crucial for dynamic parallelism
- Performance Strategies
 - Resource-allocation as runtime
 - Kernel fusion
 - Algorithm serialization
 - Warp-synchronous programming
 - Flexible granularity via meta-programming
- Challenges for the Programming Model
 - Poor functional abstraction
 - Little code-reuse
 - How to ship/deploy flexible code (avoid code bloat)

Questions?

{dgm4d, grimshaw} @ virginia.edu