
AM++: A Generalized Active
Message Framework

Andrew Lumsdaine
Indiana University

Large-Scale Computing
  Not just for PDEs

anymore
  Computational

ecosystem is a bad
match for informatics
applications
  Hardware
  Software
  Programming paradigms
  Problem solving

approaches

2

This talk
  About lessons learned in developing two generations

of a distributed memory graph algorithms library
  Problem characteristics
  PBGL Classic and lessons learned
  AM++ overview
  Performance results
  Conclusions

3

Supercomputers, what are they good for?

4

Benchmarks Scientific
Applications

Informatics
Applications

G
oo

d
E

no
ug

h

Compute
Bound

Bandwidth
Bound

Latency
Bound

Informatics Apps: Data Driven

5

Benchmarks Scientific
Applications

G
oo

d
E

no
ug

h

Informatics
Applications

  Data access is data dependent
  Communication is data

dependent
  Execution flow is data dependent
  Little memory or communication

locality
  Difficult or impossible to balance

load well
  Latency-bound with many small

messages

Data-Driven Applications
  Many new, important HPC applications are data-

driven (“informatics applications”)
  Social network analysis
  Bioinformatics

  Different from “traditional” applications
  Communication is highly data-dependent
  Little memory or communication locality
  Difficult or impossible to balance load well
  Latency-bound with many small messages

  Current models do not fit these applications well

6

The Parallel Boost Graph Library
  Goal: To build a generic library of efficient,

scalable, distributed-memory parallel graph
algorithms.

  Approach: Apply advanced software paradigm
(Generic Programming) to categorize and
describe the domain of parallel graph algorithms.
Separate concerns. Reuse sequential BGL
software base.

  Result: Parallel BGL. Saved years of effort.

BGL: Algorithms (partial list)
  Searches (breadth-first,

depth-first, A*)
  Single-source shortest

paths (Dijkstra, Bellman-
Ford, DAG)

  All-pairs shortest paths
(Johnson, Floyd-Warshall)

  Minimum spanning tree
(Kruskal, Prim)

  Components (connected,
strongly connected,
biconnected)

  Maximum cardinality
matching

  Max-flow (Edmonds-
Karp, push-relabel)

  Sparse matrix ordering
(Cuthill-McKee, King,
Sloan, minimum
degree)

  Layout (Kamada-Kawai,
Fruchterman-Reingold,
Gursoy-Atun)

  Betweenness centrality
  PageRank
  Isomorphism
  Vertex coloring
  Transitive closure
  Dominator tree

Parallel BGL Architecture

9

Algorithms in the Parallel BGL (partial)
  Breadth-first search*
  Eager Dijkstra’s single-

source shortest paths*
  Crauser et al. single-

source shortest paths*
  Depth-first search
  Minimum spanning tree

(Boruvka*, Dehne &
Götz‡)

  Connected
components‡

  Strongly connected
components†

  Biconnected
components

  PageRank*
  Graph coloring
  Fruchterman-Reingold

layout*
  Max-flow†

* Algorithms that have been lifted from a sequential implementation
† Algorithms built on top of parallel BFS
‡ Algorithms built on top of their sequential counterparts

  Generic interface from the Boost Graph Library
template<class IncidenceGraph, class Queue, class BFSVisitor,!
 class ColorMap>!
void breadth_first_search(const IncidenceGraph& g, !
 vertex_descriptor s, Queue& Q,!
 BFSVisitor vis, ColorMap color);!

  Effect parallelism by using appropriate types:
  Distributed graph
  Distributed queue
  Distributed property map

  Our sequential implementation is also parallel!

“Implementing” Parallel BFS

Breadth-First Search
put(color, s, Color::gray());
Q.push(s);
while (! Q.empty()) {
 Vertex u = Q.top(); Q.pop();
 for (e in out_edges(u, g)) {
 Vertex v = target(e, g);
 ColorValue v_color = get(color, v);
 if (v_color == Color::white()) {
 put(color, v, Color::gray());
 Q.push(v);
 }
 }
 put(color, u, Color::black());
}

Two-Sided (BSP) Breadth-First Search
while any rank’s queue is not empty:
 for i in ranks: out_queue[i]  empty
 for vertex v in in_queue[*]:
 if color(v) is white:
 color(v)  black
 for vertex w in neighbors(v):
 append w to out_queue[owner(w)]
 for i in ranks: start receiving in_queue[i] from rank i
 for j in ranks: start sending out_queue[j] to rank j
 synchronize and finish communications

13

Two-Sided (BSP) Breadth-First Search

14

Rank 0 Rank 1 Rank 2 Rank 3

Get
neighbors

Redistribute
queues

Combine
received
queues

PBGL: Lessons learned
  When MPI is your

hammer
  All of your problems

look like a thumb

15

  How you express your algorithm impacts performance
  PBGL needs a data-driven approach

  Data-driven expressivenes
  Utilize underlying hardware efficiently

Messaging Models
  Two-sided

  MPI
  Explicit sends and receives

  One-sided
  MPI-2 one-sided, ARMCI, PGAS languages
  Remote put and get operations
  Limited set of atomic updates into remote memory

  Active messages
  GASNet, DCMF, LAPI, Charm++, X10, etc.
  Explicit sends, implicit receives
  User-defined handler called on receiver for each message

16

Data-Driven Breadth-First Search
handler vertex_handler(vertex v):
 if color(v) is white:
 color(v)  black
 append v to new_queue

while any rank’s queue is not empty:
 new_queue  empty
 begin active message epoch
 for vertex v in queue:
 for vertex w in neighbors(v):
 tell owner(w) to run vertex_handler(w)
 end active message epoch
 queue  new_queue

17

Active Message Breadth-First Search

18

Rank 0 Rank 1 Rank 2 Rank 3

Get
neighbors

Send vertex
messages

Check color
maps

Insert into
queues

Active
message
handler

Active Messages
  Created by von Eicken

et al, for Split-C (1992)
  Messages sent explicitly
  Receivers register

handlers but are not
involved with individual
messages

  Messages typically
asynchronous for higher
throughput

19

Send

Message
handler

Reply

Reply
handler

Tim
e

Process 1 Process 2

The AM++ Framework
  AM++ provides a “middle ground” between low- and

high-level systems
  Gives up some performance for programmability
  Give up some high-level features (such as built-in object

load balancing) for performance and simplicity
  Missing features can be built on top of AM++
  Low level performance can be specialized

20

DCMF GASNet
Java RMI

X10 Charm++
AM++

Important Characteristics
  Intended for use by applications
  AM handlers can send messages
  Mix of generative (template) and object-oriented

approaches
  OO for flexibility when small performance loss is OK
  Templates when optimal performance is essential

  Flexible/application-specific message coalescing
  Including sender-side message reductions

  Messages sent to processes, not objects

21

Example

22

Create Message Transport
(Not restricted to MPI)

Coalescing layer
(and underlying message type)

Message Handler

Messages are nested to depth 0

Epoch scope

Transport Lifetime

23

rank 0

 1

 2

(5) Messages

 (2, 3) Scope of Coalescing
and Message Objects

(4) Epoch (1) Transport

(6) Termination Detection

(5) Msg Handler
Execution

Time

Resource Allocation Is Initialization
  Want to ensure cleanup of various kinds of “scoped”

regions
  Registrations of handlers
  Epochs
  Message nesting depths

  Resource Allocation Is Initialization (RAII) is a
standard C++ technique for this
  Object represents registration, epoch, etc.
  Destructor ends corresponding region

  Exception-safe and convenient for users

24

Parallel BGL Architecture

25

Parallel BGL
Graph

Algorithms

Distributed

Distributed

Communication
Abstractions

(MPI, Threads)

Transports

BGL Graph
Algorithms

Graph Data
Structures

Graph
Concepts

Vertex/Edge
Properties

Property Map
Concepts

AM++ Design

26

MPI or Vendor Communication Library

AM++ Transport

Message
Type

Message
Type

Coalescing

Reductions

User

Message
Type

Coalescing

Epoch

TD Level

Termination
Detection

  Interface to underlying communication layer
  MPI and GASNet currently

  Designed to send large messages produced by
higher-level components
  Object-oriented techniques allow run-time flexibility

Transport

27

rank 0

 1

 2

(5) Messages

 (2, 3) Scope of Coalescing
and Message Objects

(4) Epoch (1) Transport

(6) Termination Detection

(5) Msg Handler
Execution

Time

Message Types

  Handler registration for messages within transport
  Type-safe interface to reduce user casts and errors
  Automatic data buffer handling

28

rank 0

 1

 2

(5) Messages

 (2, 3) Scope of Coalescing
and Message Objects

(4) Epoch (1) Transport

(6) Termination Detection

(5) Msg Handler
Execution

Time

Termination Detection/Epochs

  AM++ handlers can send messages
  When have they all been sent and handled?

  Some applications send a fixed depth of nested
messages

  Time divided into epochs (consistency model)

29

rank 0

 1

 2

(5) Messages

 (2, 3) Scope of Coalescing
and Message Objects

(4) Epoch (1) Transport

(6) Termination Detection

(5) Msg Handler
Execution

Time

Message Coalescing

  Standard way to amortize overheads
  Layered on top of AM++ transport and message type
  Allows handlers that apply to one small message at

a time
  Sends can be of a single small message

30

rank 0

 1

 2

(5) Messages

 (2, 3) Scope of Coalescing
and Message Objects

(4) Epoch (1) Transport

(6) Termination Detection

(5) Msg Handler
Execution

Time

Message Handler Optimizations

  Coalescing uses generative programming and C++
templates for performance on high message rates

  Small-message handler type is known statically
  Simple loop calls handler
  Compiler can optimize using standard techniques

31

rank 0

 1

 2

(5) Messages

 (2, 3) Scope of Coalescing
and Message Objects

(4) Epoch (1) Transport

(6) Termination Detection

(5) Msg Handler
Execution

Time

Message Reductions

  Some applications have messages that are
  Idempotent: duplicate messages can be ignored
  Reducible: some messages can be combined

  Catch some of these sender-side

32

rank 0

 1

 2

(5) Messages

 (2, 3) Scope of Coalescing
and Message Objects

(4) Epoch (1) Transport

(6) Termination Detection

(5) Msg Handler
Execution

Time

AM++ and Threads
  AM++ is thread-safe

  MPI transport, coalescing, reductions
  Locking can be disabled for single-threaded use
  Can run separate handlers in separate threads

  Each coalesced message processed in a single thread
  Or split a single message across several threads

  Using OpenMP, etc. in the handler-call loop
  Coalescing buffer sizes affect parallelism in both

models
  But in different ways

33

Evaluation: Message Latency

34

Evaluation: Message Bandwidth

35

Breadth-First Search: Strong Scaling

36
ER graph: 2^27 vertices, 2^29 edges

Breadth-First Search: Weak Scaling

37

Delta-Stepping: Strong Scaling

38

Delta-Stepping: Weak Scaling

39

Why MPI Worked

Distributed
Memory Hardware

NX
Shmem
P4, PVM
Sockets

Message
Passing
Rules!

MPI

“Legacy MPI codes”

MPICH
LAM/MPI

Open MPI
…

Multicore Ubiquity

Multicore
Ubiquity

MPI
OpenMP
HPCS
PGAS
TM

???

???

???

???

  Advance what works

Conclusion
  Data driven problems need data-driven messaging
  Generative programming techniques can be used to

design a flexible active messaging framework, AM++
  Intended for application programs/libraries
  A “middle ground” between previous low-level and high-

level systems
  Features can be composed on that framework

  Application-specific message coalescing
  Message reductions/duplicate removal

  Performance comparable to other systems and
better than previous Parallel BGL

42

43

