

Enabling Linux for the Grid

XtreemOS European Project: Achievements & Perspectives

Christine Morin

XtreemOS scientific coordinator

Head of Myriads research team

INRIA Rennes - Bretagne Atlantique

CCGSC 2010 - Flat Rock, NC

XtreemOS IP project
is funded by the European Commission under contract IST-FP6-033576

XtreemOS in a Nutshell

- Distributed operating system for large scale dynamic Grids
 - "Operating system" approach
 - Comprehensive set of cooperating system services
 - Ease of use
 - "Bring the Grid to standard users"
 - Unix system interface
 - SAGA programming interface
 - Scalability
 - Dependable system

XtreemOS Flavours

XtreemOS Open Source Software

- Open source development
- Release 2.1.1 packaged for Mandriva and Asianux Linux distributions
 - Packaging in progress for Debian, Ubuntu, Open Suse
- Ready to use VM images for KVM & Virtual Box
- Open testbed for the community
 - Test your applications without installing XtreemOS
- Tool for automatic configuration of the system
 - Deployment on Grid'5000

Overview of Applications

19 applications demonstrating and evaluating XtreemOS from the perspective of industrial and academic end-users

Some Contributions

XtreemOS system services

- VO & security management
- XtreemFS Grid file system
- Job & resource management
- OSS object sharing system

XOSAGA

- SAGA programming interface
- Virtual Node approach
 - Highly available applications & system services

VO & Security Management

Scalable VO management

- Independent user & resource management
- On-the-fly mapping of Grid credentials to Linux user accounts
- Customizable isolation, access control and auditing
- Secure and reliable application execution
 - Fine-grained control of resource usage

VO & Security Management

Improved usability

- Local resource administrator: autonomous management of local resources
- VO administrator: flexible management of credential and VO policies
- End user: login as a Grid user into a VO
 - On-line certificate distribution
 - Single sign-on & delegation
 - System services services trust each other ("operating system approach")
 - A trusted credential store service associated to each user session
 - There is not need of proxy certificates

Grid Management

XtreemFS Grid File System

Federating storage in different administrative domains

XtreemFS Features

- Posix compatible file system (API, behaviour)
- Provide users a global view of their files in a Grid
 - Each XtreemOS user has a home volume in XtreemFS
 - Transparent location-independent access to data
- Consistent data sharing
- Access control based on VO member credentials
- Autonomous data management with self-organized replication and distribution
- Advanced metadata management

Job & Resource Management

- Job self-scheduling
- Decentralized resource discovery based on overlays
- Resource reservation
- Unix-like job management
- Support for interactive jobs
- Accurate & adaptable monitoring
- Job checkpoint/restart & migration

XtreemGCP Service

- Automatic management of the user specified fault tolerance strategy
 - Handling checkpoint/restart for Grid applications

XtreemGCP Service

Generic service

- Different levels to implement fault tolerance
 - In the application code
 - In a programming environment (MPI ...)
 - At system level transparently to the application
 - VM Suspend/restart
- Different backward error recovery protocols
 - Checkpoint based (coordinated, independent, message induced, ...), message logging based (pessimistic, optimistic, causal, ...),...
- Different technologies for process group checkpointing
 - Some do not handle all resources

Process Group Checkpointers

Condor BLCR

Epckpt

UCLiK

CoCheck

VMADump

LAM/MPI&BLCR

Ckpt

LinuxSSI

OpenVZ

SCore

Linux-native

VMWare player

CP/R

KMU TICK

MCR

CHPOX

DCR

zap

CRAK

CLIP

libckpt

tmPVM

Dynamite

User Perspective

User/application commands

\$xjobcheckpoint JobID

\$xjobrestart JobID CPversion

JSDL file extensions

- Extended by checkpointing tags
- Checkpointer requirements
- Protocols and parameters
- **.**

JSDL File Sample: Checkpointing

```
<JobCheckpointing>
     <Initiator>System</Initiator>
     < Protocol Management >
              <Name>CoordinatedCheckpointing</Name>
              <Parameter>1hour<Parameter>
     </ProtocolManagement>
     <FileManagement>
              <ReplicationLevel>5<ReplicationLevel>
     </FileManagement>
     <JobCheckpointerMatching>
              <MultiThread>Yes</MultiThread>
              <Sockets>Yes</Sockets>
     </JobCheckpointerMatching>
```

</JobCheckpointing>

XtreemOS-GCP Architecture

Grid level

Job Checkpointer

(Job Manager extension)

Node Level

Job-unit Checkpointer (Execution Manager extension)

Job-unit Checkpointer (Execution Manager extension)

Common Checkpointer API

SSI-Translib

BLCR-Translib

LinuxSSI Kernel Checkp.

BLCR Checkpointer

XtreemOS-SSI cluster

XtreemOS PC

Common Kernel Checkpointer API

- Provide a uniform access to different checkpointers
 - translib library
- Translate jobs in Linux process groups
- Translate user credential in Linux user account
- Provide callbacks to applications
 - Processed during checkpoint and restart operations
 - Allow applications to optimize checkpointing
 - Used to drain communication channels

Common Checkpointer API

- To which extent must existing checkpointers be adapted to support various checkpointing protocols?
- We need the following sequences
 - Stop
 - Checkpoint

Checkpoint

- resume_cp
- Rebuild

Restart

resume_rst

Callback Management

- Implemented in the generic part of translib
- Called before and after a checkpoint and after restart
- Common API for application callback registration

Usage

- Application optimizations
- Complement checkpointer incapabilities
- Checkpointing communication channels

Other Issues

- Fault tolerance information stored in XtreemFS Grid file system
 - checkpoint replication
 - checkpoint can be accessed from any Grid node
- Resource conflict avoidance at restart
- Management of security issues regarding the use of fault tolerance information

Current Status

XtreemGCP fully integrated in XtreemOS

- PC and cluster nodes
- Sequential, parallel and distributed applications
- System level checkpointing

Kernel checkpointer supported

- BLCR, OpenVZ based checkpointer, native Linux checkpointer, Kerrighed checkpointer
- Call back mechanisms

Protocols supported

- Coordinated checkpointing (for job migration)
- Independent checkpointing

What's coming next?

What's coming next?

- Sustainability of the XtreemOS Grid technology
- Cloud computing Contrail EC funded R&D project

XtreemOS & Cloud Computing

- Feasibility studies (2008 ...)
 - Extending an XtreemOS Grid with resources gathered from Clouds
 - Hbase on top of XtreemFS
 - Picture sharing application over XtreemOS in a cloud
 - XtreemOS as a system to manage laaS Clouds

Contrail European Project

Objectives

 Design, implement, evaluate and promote an open source system to federate computing resources from different providers in a single cloud easy to access for users

Approach

- Vertical integration of
 - Infrastructure-as-a-Service services
 - Runtimes and high level services providing the foundations for *Platform-as-a-Service* services

Contrail in a Nutshell

Contrail European Integrated Project

Coordinator

■ INRIA, France

Academic partners

- CNR, Italy
- STFC, UK
- Vrije Universiteit Amsterdam, The Netherlands
- ZIB, Germany

Industrial partners

- CONSTELLATION, UK
- GENIAS, The Netherlands
- HP, Italy
- TISCALI, Italy
- XLAB, Slovenia

Starting date: October 2010

Duration: 3 years

■ Budget: 11,4 M€

■ EC funding: 8,3 M€

Acknowledgements

More Information

XtreemOS

- Web site: http://www.xtreemos.eu
- Software: http://gforge.inria.fr/projects/xtreemos/
 - GPL/BSD licence
- INRIA/XtreemOS booths at SC 2010

Contrail

http://www.contrail-project.eu