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MapReduce

Data Partitions

Map(Key, Value) s
A hash function maps
the results of the map
Reduce(Key, List<Value>) I tasks to reduce tasks
Reduce Outputs

* Implementations (Hadoop — Java; Dryad — Windows) support:
— Splitting of data with customized file systems
— Passing the output of map functions to reduce functions
— iorting the inputs to the reduce function based on the intermediate
eys
— Quality of service
e 20 petabytes per day (on an average of 400 machines) processed
by Google using MapReduce September 2007



MapReduce “File/Data Repository” Parallelism

Map = (data parallel) computation reading and writing data
Reduce = Collective/Consolidation phase e.g. forming multiple
global sums as in histogram

Instruments

MPI or Iterative MapReduce
Map Reduce Map Reduce Map

Portals
[/Users
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Typical Application Challenge:
DNA Sequencing Pipeline

MapReduce

, 1 Pairwise
I I | clustering
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. Sequence Dissimilarity — Visualization
FASTA File Blocking block Alignment/ Matrix MPI
N Sequences Pairings Assembly
N(N-1)/2 values
— MDS —

Read
Alignment
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Illumina/Solexa Roche/454 Life Sciences Applied Biosystems/SOLID

Internet - :D -

Modern Commercial Gene Sequencers

Linear Algebra or Expectation Maximization based data mining poor
on MapReduce — equivalent to using MPI writing messages to disk and
restarting processes each step/iteration of algorithm



Metagenomics 30,000 sequences
Clustered into 17

Metagenomics
This visualizes results of
dimension reduction to
3D of 30000 gene
sequences from an
environmental sample.
The many different
genes are classified by
clustering algorithm and
visualized by MDS
dimension reduction




All-Pairs Using MPI or DryadLINQ
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Each D consecative blocks are merged to form a
set of row blocks each with NxD elements

Calculate Pairwise Distances (Smith Waterman Gotoh)
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* Calculate pairwise distances for a collection of genes (used for clustering, MDS)

* Fine grained tasks in MPI

* Coarse grained tasks in DryadLINQ

* Performed on 768 cores (Tempest Cluster)

Moretti, C., Bui, H., Hollingsworth, K., Rich, B., Flynn, P., & Thain, D. (2009). All-Pairs: An Abstraction for Data Intensive Computing on
Campus Grids. IEEE Transactions on Parallel and Distributed Systems , 21, 21-36.



Smith Waterman
MPI DrvadLINQ Hadoob
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Hadoop is Java; MPIl and Dryad are C#



Twister(MapReduce++)

Pub/Sub Broker Network

Worker Nodet 1

I Data Read/Write

t Communication

MR User
Driver
: File System
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Yahoo Hadoop Microsoft DRYAD MapReduce++ is MPl is long
uses short running uses short running long running running processes
processes processes processing with with Rendezvous
communicating communicating via asynchronous for message
via disk and pipes, disk or distributed exchange/
tracking shared memory Rendezvous synchronization
processes between cores synchronization

Different synchronization and intercommunication
mechanisms used by the parallel runtimes

@ Map Worker
1 O Reduce Worker

Program n MRDeamon

Static
data

6 flow

Streaming based communication

Intermediate results are directly
transferred from the map tasks to the
reduce tasks — eliminates local files

Cacheable map/reduce tasks
* Static data remains in memory
Combine phase to combine reductions

User Program is the composer of
MapReduce computations

Extends the MapReduce model to
iterative computations

Iterate

Configure() f\
‘1, User

Program

Map(Key, Value)

uce (Key, List<Value>)

N

Combine (Key, List<Value>)

v

Close()



Iterative and non-lterative Computations

. Data split - 2D data points

Compute the

distance to each data
point from each cluster
‘ center and assign :
points to the

K-means j>

i cluster centers

. Compute the new -
‘ cluster centers

................................................................................ Smith Waterman is a non iterative

User Program | Compute the error and decide - case and of course runs fine
: whether to continue iteration :

Performance of K-Means
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Matrix Multiplication 64 cores
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Performance of Pagerank using
ClueWeb Data (Time for 20 iterations)
using 32 nodes (256 CPU cores) of Crevasse
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Fault Tolerance and MapReduce

MPI does “maps” followed by “communication” including
“reduce” but does this iteratively

There must (for most communication patterns of interest) be
a strict synchronization at end of each communication phase

— Thus if a process fails then everything grinds to a halt

In MapReduce, all Map processes and all reduce processes
are independent and stateless and read and write to disks

— As 1 or 2 (reduce+map) iterations, no difficult synchronization
issues

Thus failures can easily be recovered by rerunning process
without other jobs hanging around waiting

Re-examine MPI fault tolerance in light of MapReduce
— Relevant for Exascale?

Re-examine MapReduce in light of MPI experience .....



MPI| & Iterative MapReduce papers

MapReduce on MPI Torsten Hoefler, Andrew Lumsdaine and Jack Dongarra, Towards
Efficient MapReduce Using MPI, Recent Advances in Parallel Virtual Machine and
Message Passing Interface Lecture Notes in Computer Science, 2009, Volume
5759/2009, 240-249

MPI with generalized MapReduce

Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy Qiu,
Geoffrey Fox Twister: A Runtime for Iterative MapReduce, Proceedings of the First
International Workshop on MapReduce and its Applications of ACM HPDC 2010
conference, Chicago, lllinois, June 20-25, 2010
http://grids.ucs.indiana.edu/ptliupages/publications/twister _hpdc _mapreduce.pdf
http://www.iterativemapreduce.org/

Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, llan Horn,
Naty Leiser, and Grzegorz Czajkowski Pregel: A System for Large-Scale Graph Processing,
Proceedings of the 2010 international conference on Management of data Indianapolis,
Indiana, USA Pages: 135-146 2010

Yingyi Bu, Bill Howe, Magdalena Balazinska, Michael D. Ernst HaLoop: Efficient Iterative
Data Processing on Large Clusters, Proceedings of the VLDB Endowment, Vol. 3, No. 1,
The 36th International Conference on Very Large Data Bases, September 1317, 2010,
Singapore.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, lon Stoica
Spark: Cluster Computing with Working Sets poster at
http://radlab.cs.berkeley.edu/w/upload/9/9c/Spark-retreat-poster-s10.pdf




AzureMapReduce

Map Task Scheduling Azure Storage
Message Queue
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Cost ()
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™ Azure MapReduce
® Amazon EMR
™ Hadoop on EC2



Smith Waterman: “Scaled Speedup” Timing
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Time (s)

Smith Waterman: daily effect
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SWG Cost
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™ Hadoop on EC2
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TwisterMPIReduce

e ' | )
PairwiseClustering Multi Dimensional To o(::n:ir::’\llae i Other
MPI Scaling MPI REEL PRI
k MPI J

TwisterMPIReduce

ﬁ‘%ﬁ

* Runtime package supporting subset of MPI
mapped to Twister

e Set-up, Barrier, Broadcast, Reduce



Some Issues with AzureTwister
and AzureMapReduce

Transporting data to Azure: Blobs (HTTP), Drives
(GridFTP etc.), Fedex disks

Intermediate data Transfer: Blobs (current choice)
versus Drives (should be faster but don’t seem to be)

Azure Table v Azure SQL: Handle all metadata

Messaging Queues: Use real publish-subscribe system
in place of Azure Queues to get scaling (?) with multiple
brokers — especially AzureTwister

Azure Affinity Groups: Could allow better data-compute
and compute-compute affinity



Research Issues

Clouds are suitable for “Loosely coupled” data parallel applications

“Map Only” (really pleasingly parallel) certainly run well on clouds
(subject to data affinity) with many programming paradigms

Parallel FFT and adaptive mesh PDE solver very bad on MapReduce
but suitable for classic MPI engines.

MapReduce is more dynamic and fault tolerant than MPI; it is
simpler and easier to use

Is there an intermediate class of problems for which Iterative
MapReduce useful?

Long running processes?

Mutable data small in size compared to fixed data(base)?
Only support reductions?

s it really different from a fault tolerant MPI?

Multicore implementation

Link to HDFS or equivalent data parallel file system

Will AzureTwister run satisfactorily?



. Future < g W Future
. Grid FutureGrid in a Nutshell . Grid

FutureGrid provides a testbed with a wide variety of computing
services to its users

— Supporting users developing new applications and new middleware
using Cloud, Grid and Parallel computing (Hypervisors — Xen, KVM,
ScaleMP, Linux, Windows, Nimbus, Eucalyptus, Hadoop, Globus,
Unicore, MPI, OpenMP ...)

— Software supported by FutureGrid or users
— ~5000 dedicated cores distributed across country

The FutureGrid testbed provides to its users:

— Arich development and testing platform for middleware and application
users looking at interoperability, functionality and performance

— Arich education and teaching platform for advanced cyberinfrastructure
classes
Each use of FutureGrid is an experiment that is reproducible

Cloud infrastructure supports loading of general images on
Hypervisors like Xen; FutureGrid dynamically provisions software
as needed onto “bare-metal” using Moab/xCAT based
environment



.\ Future

w Future  EutureGrid: a Grid/Cloud " Grid

v, Grid s,
— Testbed —

* Operational: IU Cray operational; 1U, UCSD, UF & UC IBM iDataPlex operational

* Network, NID operational
 TACC Dell running acceptance tests — ready ~September 15

To GEANT
Dresden, Grid5000, J
other European Grids ) (',

i/ WUC: TTF IBM 672 cores
"' WPU: 4TF Dell 384 cores
L MIU: 11TF IBM 1024 cores

s 7TF Cray 684 cores

4TF Shared Memory

Y Core \ |
Router

/ B UCSD: 7TF IBM 672 cores
B TACC: 12TF Dell 1152 cores
B UF: 3TF IBM 256 cores
E— Private - i 7 L\ NID: Network
mmm—= Public FG Network "  ‘\ Impairment Device
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Time elapsed between requesting a job and the jobs reported start
time on the provisioned node. The numbers here are an average of 2
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Provisioning Results
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d Join us in Indianapolis for . . .
Cloud Computing Association 1

= _ (Cloud Computing 2010
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N For more information in the coming months visit:
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200 papers submitted to main track; 4 days of tutorials




