Future Directions in MPI

Rajeev Thakur
Mathematics and Computer Science Division

Argonne National Laboratory

/ U.S. DEPARTMENT OF
.9/ ENERGY

MPI on the Largest Machines Today

Systems with the largest core counts in June 2010 Top500 list

Julich BG/P 294,912 cores
Oak Ridge Cray XT5 224,162 cores
LLNL BG/L 212,992 cores
Argonne BG/P 163,840 cores

LLNL BG/P (Dawn) 147,456 cores

= MPI already runs successfully on these systems

= |n acouple of years, we will have systems with more than a million cores

= For example, in 2012, the Sequoia machine at Livermore will be an IBM
Blue Gene/Q with ~1.6 million cores

— More than 5 times the size of today’s largest machine

Future Extreme Scale Platforms

= Hundreds of thousands of “nodes”

= Each node has large numbers of cores, including
— Regular CPUs and accelerators (e.g., GPUs)

Mgmt Compute /O Storage
Nodes Nodes Nodes Targets

Multiple Cores Per Node

All Large Cores

Memory Floating

Point Cores

+ 3D Stacked Memory

Many small cores

LI

LIl

LI

HEEE RN

IO

IO

All small cores

HREN
RN

Different Classes of Chips

Home
Games/Graphics

Business
Scientific

Scaling MPI to Exascale

= MPI already runs on the largest systems today at ~300,000 cores

= What would it take to scale MPI to exascale systems with millions of
cores?

= On exascale, MPl is likely to be used as part of a “hybrid programming”
model (MPI+X), much more so than it is today
— MPI being used to communicate between “address spaces”

— With some other “shared-memory” programming model (OpenMP, UPC,
CUDA, OpenCL) for programming within an address space

= How can MPI support efficient “hybrid” programming on exascale
systems?

Scaling MPI to Exascale

= Although the original designers of MPIl were not thinking of exascale, MPI
was always intended and designed with scalability in mind. For example:

— A design goal was to enable implementations that maintain very little global
state per process

— Another design goal was to require very little memory management within
MPI (all memory for communication can be in user space)

— MPI defines many operations as collective (called by a group of processes),
which enables them to be implemented scalably and efficiently

= Nonetheless, some parts of the MPI specification may need to be fixed for
exascale

— Being addressed by the MPI Forum in MPI-3

Factors Affecting MPI Scalability

Performance, memory consumption, fault tolerance

A nonscalable MPI function is one whose time or memory consumption
per process increase linearly (or worse) with the total number of
processes

For example
— If memory consumption of MPI_Comm_dup increases linearly with the no.
of processes, it is not scalable
— If time taken by MPI_Comm_spawn increases linearly or more with the no.
of processes being spawned, it indicates a nonscalable implementation of
the function
Such examples need to be identified and fixed (in the specification and
in implementations)

The goal should be to use constructs that require only constant space
per process

Examples of Scalability Issues in the MPI
Specification

= Some functions take parameters that grow linearly with number of
processes

= E.g., irregular (or “v”) version of collectives such as MPI_Gatherv
= Extreme case: MPI_Alltoallw takes six such arrays
— On a million processes, that requires 24 MB on each process

= On low-frequency cores, even scanning through large arrays takes time
(see next slide)

= Solution: The MPI Forum is considering a proposal to define sparse,
neighborhood collectives that could be used instead of irregular
collectives

Zero-byte MPI_Alltoallv time on BG/P

Alltoallv Average Time

30000

25000 /
20000

=@=Alltoallv Time /
15000 /
10000 /

5000

Average Time (us)

P v R oar ek #‘.\,é‘,,;ﬂ“bu*";gb*‘

Number of Processes

= Thisis just the time to scan the parameter array to determine it is all
0 bytes. No communication performed.

Other Issues in the MPI Specification

Graph Topology

— In MPI 2.1 and earlier, requires the entire graph to be specified on each
process

— Already fixed in MPI 2.2 — new distributed graph topology functions
— But existing applications must switch to the new interface

One-sided communication
— Synchronization functions turn out to be expensive
— Being addressed by RMA working group of MPI-3

Representation of process ranks

— Explicit representation of process ranks in some functions, such as
MPI_Group_incl and MPI_Group_excl

— Concise representations should be considered

10

Fault Tolerance

Large component counts will result in frequent failures
Greater resilience needed from all components of the stack

— Hardware, system software, MPI library, applications

MPI already allows implementations to return an error code and
remain alive, but more support is needed

Various research projects have explored fault tolerance in MPI
— MPICH-V, FT-MPI, HARNESS, ABARIS, and others

Supported to various degrees in Open MPIl and MPICH2

CiFTS project aims to coordinate fault tolerance among various system
software components, including MPI

Fault tolerance working group in the MPI Forum is exploring additional
fault tolerance features for MPI-3 (more later)

11

Requirements of a message-passing library at
extreme scale

No O(nprocs) consumption of resources (memory, network
connections) per process

Resilient and fault tolerant

Efficient support for hybrid programming (multithreaded
communication)

Good performance over the entire range of message sizes and all
functions, not just latency and bandwidth benchmarks

Fewer performance surprises

These issues are being addressed by the MPI Forum for MPI-3 and by
MPI implementations

12

Example of a Memory Consumption Problem

= NEK5000 code initially failed on 8K processes on IBM BG/P because the
MPI implementation ran out of memory in MPI_Comm_dup

= |BM’s MPI was allocating O(nprocs) memory in each call to
MPI_Comm_dup to store some process mapping info for optimizing
collectives

= After some 40-50 calls to MPI_Comm_dup, NEK5000 failed

Maximum Number of Communicators
v 9000
2 8000
O
= 7000 \\
£ 6000 \
£ 5000 N
q‘g 4000 \
. 3000 \
2 2000
£ 1000 e
b4
0 | | | | | | | | | | | | N_‘
* & O A > D oD A A
N %Y © ,\')/ ,f,o (,)'\z N Y % 9 ,\? o”b Q)b‘\’)ib
Number of Processes

13

Communicator Memory Consumption Fixed

= Looking at the source code, we found that IBM’s MPI really only needed
one buffer per thread instead of one buffer per new communicator

= Since there are only four threads on the BG/P, we fixed the problem by
allocating a fixed buffer pool within MPI

= We provided IBM with a patch that fixed the problem and enabled
NEK5000 to run at full scale

Maximum Number of Communicators
g 9000
-E 8000 ,J:l:l:l:l:l:l:l:lg:l:l:l:l:l:l>
‘e 7000
£ 6000 \\
€ 5000 —e— Default N
q‘f 4000
o —— Buffer Pool \
< 3000 \
S 2000
£ 1000 e
Z 0 | | | | | | | | | | | | N_‘
b O A > AD o DA A
VOGNS N VT AT ST ST G P
Number of Processes

14

Example of a Performance Scalability Problem

= A user (Nick Romero) on our BG/P complained that MPI_Comm_split was
scaling poorly

= As he doubled the number of processes, the time taken by
MPI_Comm_split quadrupled

16,384 procs 1.5 sec
32,768 procs 6.3 sec

65,536 procs 25.3 sec
131,072 procs 101.2 sec

= Clearly something O(p?) going on

15

The Problem and the Fix

MPI_Comm_split does an allgather of the colors and keys from all
processes, followed by a local sort of the keys for the same color

In the case where all ranks pass the same color, the data set to be sorted
is of size p

The local sort used a simple bubble sort algorithm, which is O(p?)
— The code did have a FIXME comment acknowledging this

Simply switching the local sort to use quicksort, which is O(plgp), fixed the
problem

OLD NEW
16,384 procs 1.5 sec 0.105 sec
32,768 procs 6.3 sec 0.126 sec
65,536 procs 25.3 sec 0.168 sec
131,072 procs 101.2 sec 0.255 sec

At this scale, there is a big difference between p? and plgp!

16

Enabling Hybrid Programming

MPI is good at moving data between address spaces

Within an address space, MPI can interoperate with other “shared
memory” programming models

Useful on future machines that will have limited memory per core
(MPI + X) Model: MPI across address spaces, X within an address space

Examples:
— MPI + OpenMP
— MPI + UPC/CAF (here UPC/CAF address space could span multiple nodes)
— MPI + CUDA/OpenCL on GPU-accelerated systems

Precise thread-safety semantics of MPI enable such hybrid models

MPI Forum is exploring further enhancements to MPI to support
efficient hybrid programming

17

MPI-3 Hybrid Proposal on Endpoints

= |n MPI today, each process has one communication endpoint (rank in
MP|_COMM_WORLD)

= Multiple threads communicate through that one endpoint, requiring the
implementation to do use locks etc., which are expensive

= This proposal (originally by Marc Snir) allows a process to have multiple
endpoints

= Threads within a process attach to different endpoints and communicate
through those endpoints as if they are separate ranks

= The MPIl implementation can avoid using locks if each thread
communicates on a separate endpoint

18

Fewer Performance Surprises

= Sometimes we hear...

"T replaced

MPI_Allreduce

by
MPI_Reduce + MPI_Bcast

And got better results. Should not happen..

19

Or...

"T replaced

MPI_Send(n)

by

MPI_Send(n/k) + MPI_Send(n/k) + ... + MPI_Send(n/k)

And got better results..."

20

Or...

"T replaced

MPTI_Bcast(n)

by
<this homemade algorithm with MPI_Send(n) and MPI_Recv(n)>

And got better reslts.” Should not happen..

21

Self-Consistent MPI Performance Guidelines

= Although MPI is portable, there is a lot of performance variability
among MPI implementations

— Lots of performance surprises

= We (Traff, Gropp, Thakur) have defined some common-sense
performance guidelines for MPI
— “Self-Consistent MPI Performance Guidelines”, IEEE TPDS, 2010

= Tools could be written to check for these requirements

22

General Principles

If there is an obvious way - intended by the MPI standard - of
Improving communication time,

—>

a sound MPT implementation should do so!

- And not the user!

23

Sample Requirements

Subdividing messages into multiple messages should not reduce the

communication time
— MPI_Send(1500 bytes) <= MPIl_Send(750 bytes) + MPI_Send(750 bytes)

Replacing an MPI function with a similar function that provides
additional semantic guarantees should not reduce the communication
time

— MPI_Send <= MPI_Ssend

Replacing a specific MPIl operation by a more general operation by
which the same functionality can be expressed should not reduce
communication time

— MPI_Scatter <= MPI_Bcast

24

Example: Broadcast vs Scatter

Broadcast

Rank 0 Rank 1 Rank 2 Rank 3
R N D e

Scatter
Rank O Rank 1 Rank 2 Rank 3
I s [] []

= Scatter should be faster (or at least no slower) than broadcast

25

MPIl_Bcast vs MPIl_Scatter

45

MbI—Bcasf
MPI-Scatter

40 | " o
/___/-—'—-_/‘

35 /

30 } ,/—/

a5t o

20

64 processes

Time (microsec.)
\

15

10

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Size (bytes)

= On BG/P, scatter is 3-4 times slower than broadcast
= Broadcast has been optimized using hardware, scatter hasn’t

26

Eager vs Rendezvous Messages

CommPe foe NP L (Processos <Q0,0,0x Ina <4, 4, 2, 1> mesah) type Backng

L) L) L) L T L L} L)
&) B /_/_/_/_/_/ -

ome (=)

Time (microsec)

0 1 1 1 1 1 1 1 1
0 S00 1000 1500 2000 2500 000 500 4000 4500

2420 (bybx)
Size (bytes)

= Large jump in time when message delivery switches from eager to
rendezvous

= Sending 2 750-byte messages is faster than 1 1500-byte message

27

Recent Efforts of the MPI Forum

A

MPI Standard Timeline

= MPI-1(1994)

— Basic point-to-point communication, collectives, datatypes, etc
= MPI-2 (1997)

— Added parallel I/0, RMA, dynamic processes, C++ bindings, etc

= -—-Stable for 10 years ----

= MPI-2.1 (2008)
— Minor clarifications and bug fixes to MPI-2
= MPI-2.2 (2009)

— Today’s official standard
— Small updates and additions to MPI 2.1. Backward compatible

= MPI-3 (in progress, expected late 2011)
— Major new features and additions to extend MPI to exascale
— Organized into several working groups

29

\ |
New Features being considered in MPI-3

= Note: All these are still under discussion in the Forum and not final

= Support for hybrid programming (Lead: Pavan Balaji, Argonne)
— Extend MPI to allow multiple communication endpoints per process
— Helper threads: application sharing threads with the implementation

= |mproved RMA (Leads: Bill Gropp, UIUC, and Rajeev Thakur, Argonne)
— Fix the limitations of MPI-2 RMA
— New compare-and-swap, fetch-and-add functions
— Collective window memory allocation
— Window representing entire memory

— Query function to determine whether system is cache coherent (for
reduced synchronization requirement)

— Others...

30

New Features being considered in MPI-3

= New collectives (Lead: Torsten Hoefler, UIUC)

Nonblocking collectives already voted in (MPI_lbcast, MPI_Ireduce, etc)

Sparse, neighborhood collectives being considered as alternatives to
irregular collectives that take vector arguments

= Fault tolerance (Lead: Rich Graham, Oak Ridge)

Detecting when a process has failed; agreeing that a process has failed

Rebuilding communicator when a process fails or allowing it to continue in
a degraded state

Timeouts for dynamic processes (connect-accept)
Piggybacking messages to enable application-level fault tolerance
Others

31

New Features being considered in MPI-3

= Fortran 2008 bindings (Lead: Craig Rasmussen, LANL)
— Full and better quality argument checking with individual handles
— Support for choice arguments, similar to (void *) in C
— Passing array subsections to nonblocking functions
— Many other issues

= Better support for Tools (Lead: Martin Schulz, LLNL)

— MPIT performance interface to query performance information internal to an
implementation

— Standardizing an interface for parallel debuggers

32

Conclusions

= MPI has succeeded because

features are orthogonal (complexity is the product of the number of
features, not routines)

complex programs are no harder than easy ones
open process for defining MPI led to a solid design

programmer can control memory motion and program for locality (critical
in high-performance computing)

precise thread-safety specification has enabled hybrid programming

= MPIlis ready for scaling to extreme scale systems with millions of cores
barring a few issues that can be (and are being) fixed by the MPI Forum
and by MPI implementations

23

