
The TheLMA Project:

Multi-GPU Implementation of the Lattice Boltzmann Method

Christian Obrecht, Frédéric Kuznik, Bernard Tourancheau,
and Jean-Jacques Roux

CCGSC – September 8, 2010

Motivations

Due to computational cost, fluid dynamics is often neglected
in building physics. Modelling of energy efficient buildings
requires to take these effects into account.

The lattice Boltzmann method (LBM) is an innovative
approach in CFD. Besides other advantages, parallel
implementations of the LBM are rather straightforward.

GPUs, e.g. CUDA capable hardware, provide an inexpensive
and efficient way to perform parallel computations.

In real life computations, the device memory of a single GPU
is too small to store a whole lattice, hence multi-GPU
implementations are necessary.

I – Lattice Boltzmann Method

Lattice Boltzmann Method

Mass transfer is performed in discrete time and space using a finite
set of velocities, as the D3Q19 stencil:

Lattice Boltzmann Equation

The fluid is represented by a discrete distribution fi associated to
the velocities ei , and obeying to the following equation:

fi (x + δt ei , t + δt)− fi (x, t) = Ωi (f (x, t))

where Ωi is a collision operator.

The macroscopic quantities are given by:

ρ =
∑

i

fi u =
1

ρ

∑
i

fiei

Algorithmic Aspect

The LBM breaks up in two elementary steps, i.e. collision and
propagation:

f̃i (x, t) = fi (x, t) + Ωi (f (x, t))

fi (x + δt ei , t + δt) = f̃i (x, t)

Algorithm

for each time step t do
for each lattice node x do

read velocity distribution fi (x, t)
if node x is on boundaries then

apply boundary conditions
end if
compute updated distribution f̃i (x, t)
propagate to neighbouring nodes x + δtei

end for
end for

II – Implementing the LBM on the GPU

Single-GPU Implementation of the LBM

Assign one node per thread to take advantage of massive
parallelism.

Store the velocity distribution in global memory using a
structure of array (SoA) like layout to enable coalescing.

Launch one kernel for each time step to ensure global
synchronisation.

The limiting factor for single-GPU implementation is the global
memory maximum throughput.

Misaligned Memory Transactions

The major issue in optimising single-GPU implementation is to
reduce the impact of misaligned memory transactions.

Shared Memory Approach

Normal case

Block boundaries

In-Place Propagation

Misaligned reads being far less expensive than misaligned writes,
an alternative to the shared memory approach is to use in-place
propagation.

III – Multi-GPU Implementation

The TheLMA Framework

param.c init.c stat.c output.c

main.c

thelma.cu

geometry.cu init.cu compute.cu results.cu

Lid-Driven Cubic Cavity

To validate our code, we implemented the lid-driven cubic cavity
test case. The lattice is split in cuboid sub-domains along the
major dimension.

Inter-GPU Communication Scheme

Communication between GPUs is performed using page-locked
CPU memory and zero-copy memory transactions.

Multi-GPU Communication Scheme

Communication between GPUs is performed using page-locked
CPU memory and zero-copy memory transactions.

IV – Performance Study

Performance and Scalability

0 1 2 3 4 5 6 7

Number of GPUs

0

500

1000

1500

2000

2500

3000

Pe
rf

o
rm

a
n
ce

 (
M

LU
P
S

)

 Actual Performance
 100% Efficiency

We measured up to 2.17 GLUPS (94% efficiency) using 6 Tesla
C1060 on a 1923 lattice in single precision.

Splitting along the Minor Dimension

0 1 2 3 4 5 6 7

Number of GPUs

0

500

1000

1500

2000

2500

Pe
rf

o
rm

a
n
ce

 (
M

LU
P
S

)
Horizontal
Vertical

Splitting the lattice along the minor dimension leads to
sub-domains composed of non contiguous memory cells, which has
dramatic effects on performance.

Inter-GPU Throughput

0 1 2 3 4 5 6 7

Number of GPUs

0

2000

4000

6000

8000

10000

A
v
e
ra

g
e
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Linear
Circular
Transposition

To measure inter-GPU maximum sustained throughput, we used a
stripped-off version of our program.

Maximum Sustained Throughput vs Required Throughput

GPUs Maximum (MB/s) Kernel duration (µs) Required (MB/s)

2 8958 9145 322

3 7661 6096 968

4 7270 4572 1935

6 6650 3048 4838

The required throughput is always less than the maximum
available. It should be mentioned that the devices are able of
efficient communication/computation overlapping.

Summary and Future Work

In this contribution:

We present an implementation of a multi-GPU LBM solver.

Our implementation shows good performance and scalability.

We study effective throughput of inter-GPU communications.

Future work will include:

Multi-GPU thermal LBM solver.

Extension of the TheLMA framework.

MPI based implementation.

Thank you for listening!

	Lattice Boltzmann Method
	Implementing the LBM on the GPU
	Multi-GPU Implementation
	Performance Study

