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2   Leverage exascale data and
 computer resources to
 squeeze the most out of
 image, sensor or simulation
 data 

  Run lots of different algorithms
 to derive same features 

  Run lots of algorithms to derive
 complementary features 

  Data models and data
 management infrastructure to
 manage data products, feature
 sets and results from
 classification and machine
 learning algorithms 

 Much can be done at “data
 staging time” 

Squeezing Information from Temporal Spatial
 Datasets 



Overview 
•  Integrative biomedical informatics analysis 

–feature sets obtained from Pathology and
 Radiology studies 

•  This is the same CS problem as what we have
 seen in Oil Reservoir/Seismic analyses,
 astrophysics and in Computational Fluid
 Dynamics 

•  Techniques, tools and methodologies for
 derivation, management and analysis of feature
 sets 

•  Ideas for how to move to exascale 



Examples 

Astrophysics Which portions of a star’s core are 
susceptible to implosion over time 
period [t1, t2] ? 

Compute streamlines on 
vector field v within grid points 
[(x1,y1)-(x2,y2)] 

Material 
Science 

Is crystalline growth likely to occur 
within range [p1, p2] of pressure 
conditions ? 

Compute likelihood of local 
cyclic relationships among 
nanoparticles within a frame 

Cancer studies Which regions of the tumor are 
undergoing active angiogenesis in 
response to hypoxia ? 

Determine image regions 
where (blood vessel density > 
20) and (nuclei and necrotic 
region are within 50 microns of 
each other)  



Typical data analysis scenario 
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Transformation of raw image data 

•  Normalization:  illumination. 
•  Spatial Alignment:  displacements 
•  Stitching: seamless image mosaic 
•  Warping:  standard template / canonical 
atlas 
•  …  

Analysis 

•  Pixel-based 
computing 
•  Color 
decomposition 
• Correcting for 
non uniform 
staining 

•  Shape/region-based 
computing 
•  Segmentation 
•  Feature extraction, 
classification 

•  Annotation of data 
•  Semantic querying 
•  Image mining 

Data volume decreases;    Data complexity & domain specificity increase 

Neuro- 
imaging 



INTEGRATIVE BIOMEDICAL INFORMATICS
 ANALYSIS   

Reproducible anatomic/functional characterization at
 gross level (Radiology) and fine level (Pathology) 
Integration of anatomic/functional characterization with
 multiple types of “omic” information 
Create categories of jointly classified data to describe
 pathophysiology, predict prognosis, response to
 treatment 
In Silico Center – Application Driven Computer
 Science (with National Cancer Institute flavor) 



In Silico Center for  
Brain Tumor Research 

 Specific Aims: 

1.  Influence of necrosis/ 
hypoxia on gene expression and 
genetic classification. 

2.     Molecular correlates of high 
resolution nuclear morphometry. 

3.  Gene expression profiles  
that predict glioma progression. 

4.  Molecular correlates of MRI 
enhancement patterns. 



TCGA Research Network 

Digital Pathology 

Neuroimaging 



Integration of heterogeneous multiscale 
information 

• Coordinated initiatives  
Pathology, Radiology, 
“omics” 

• Exploit synergies 
between all initiatives 
to improve ability to 
forecast survival & 
response. 

Radiology 
Imaging 

Patient  
Outco

me 

Pathologic 
Features 

“Omic” 
Data       



Oligodendroglioma Astrocytoma 

Nuclear Qualities 



Vessel Characterization 
•  Bifurcation detection 



Progression to GBM 

Anaplastic Astrocytoma 
(WHO grade III) 

Glioblastoma 
(WHO grade IV) 



Astrocytoma vs Oligodendroglima 
Overlap in genetics, gene expression, histology 

Astrocytoma vs Oligodendroglima 
•  Assess nuclear size (area and

 perimeter), shape (eccentricity,
 circularity major axis, minor axis,
 Fourier shape descriptor and extent
 ratio), intensity (average, maximum,
 minimum, standard error) and texture
 (entropy, energy, skewness and
 kurtosis). 



Whole slide scans from 14 TCGA GBMS (69 slides) 
7 purely astrocytic in morphology; 7 with 2+ oligo component 
399,233 nuclei analyzed for astro/oligo features 
Cases were categorized based on ratio of oligo/astro cells 

Machine-based Classification of TCGA GBMs (J Kong) 

TCGA Gene  
Expression Query:  
c-Met overexpression 



Classification Performance 

Neoplastic 
Astrocyte 

Neoplastic 
Oligodendrocyte 

Reactive 
Endothelial 

Reactive 
Astrocyte Junk 

Neoplastic 
Astrocyte 91.89% 1.82% 2.88% 2.25% 1.16% 

Neoplastic 
Oligodendrocyte 1.53% 95.60% 1.10% 0.14% 1.62% 

Reactive 
Endothelial 4.87% 0.53% 88.96% 2.18% 3.47% 

Reactive Astrocyte 5.37% 1.54% 6.21% 85.62% 1.27% 

Junk 2.86% 1.34% 5.24% 0.64% 89.93% 

SFFS + 10% Filtering + 100 runs 



Nuclear Qualities 

Which features carry most prognostic significance? 
Which features correlate with genetic alterations? 



Pipeline for Whole Slide Feature
 Characterization 

•  1010 pixels for each whole slide image 
•  10 whole slide images per patient 
•  108  image features per whole slide image 
•  10,000 brain tumor patients 
•  1015  pixels 
•  1013 features 
•  Hundreds of algorithms 
•  Annotations and markups from dozens of

 humans 



Feature Management and Query Framework 



Data Models to Represent Feature Sets and
 Experimental Metadata 

PAIS  |pās| : Pathology Analytical Imaging Standards 
•  Provide  semantically enabled data model to support pathology

 analytical imaging 
•  Data objects, comprehensive data types, and flexible relationships 
•  Reuse existing standards 
•  Data models (in general) likely route to integrating staging,

 immediate on line analyses and full scale analyses 
•  Semantic models/annotations 
•  Semantic directed  runtime compilation that embedded various

 partitioners (work with Kennedy, Fox) 



PAIS 



Compute Intersection Ratio and Distance Between
 Markups from Two Segmentation Algorithms 



Example TCGA Query: Mean Feature
 Vector and Feature Covariance 

•  Mean feature vector for each slide and tumor subtype 

•  Covariance between features 



Analysis framework architecture 
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Application workflow 

workflow design 

datasets 

Description module 

Ontology representations of 
(based on metadata properties) 
•  datasets 
•  application structure 
•  application behavior 
•  system components 

Execution module 

metadata 

Time constraints, accuracy requirements 
(application-level QoS) 

Trade-off module 

map high-level queries to  
low-level execution plans 

•  Runtime support for multidimensional 
   data 

•  Data management, I/O abstraction 

•  Workflow engines, filter streaming  
  middleware, batch schedulers 



Execution Module: Runtime support for 
multidimensional data 

  Customize for specific domains 
◦  Out-of-core Virtual Microscope 

  Out-of-core data? 
◦  Data stored as a collection of chunks 
◦  Chunk:  unit of data management (disk I/O, 

indexing and compression) 

  Data model 
◦  Data spatially partitioned into chunks 
◦  Chunks distributed across nodes in a shared-

nothing environment 

  Semi-streaming programming model  
◦  Leverages lightweight filter-streaming, buffer 

management by streaming middleware (e.g., 
DataCutter, IBM System S) 
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OCVM 



Mediators: I/O abstraction layer 
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Compute 
Nodes 

Active 
Storage 

Nodes 

Archival 
Nodes 



In Transit Processing using DataCutter 
Spatial Crossmatch  

•  Mapping to atlas and 3-D reconstruction
 frequently rely on spatial crossmatch 

•  We have studied spatial crossmatch with
 LLNL initially in an astronomy context 

•  Large Synoptic Survey Telescope (LSST)
 --  3.2 Gigapixel camera that captures
 field of view every 15 seconds 

•  Catalog roughly 50 billion objects in 10
 years 

•  Netezza (active disk) implementation vs
 two DataCutter based distributed mySQL
 implementations  

•  Benchmarked on Netezza and small (16
 node) cluster 



Semantic Workflows (Wings) 
Collaborative Work with Yolanda Gil, Mary Hall 
•  A systematic strategy for composing application 

components into workflows 
•  Search for the most appropriate implementation of 

both components and workflows 
•  Component optimization 

–  Select among implementation variants of the same 
computation 

–  Derive integer values of optimization parameters 
–  Only search promising code variants and a restricted 

parameter space 
•  Workflow optimization 

–  Knowledge-rich representation of workflow properties 



Adaptivity 



Time-constrained Classification: Sample Result 
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Heuristics determine more favorable chunks at an earlier point of time 
•  Tune ‘order of execution’ of chunks and ‘data resolution’ parameter per chunk   

•  32 node cluster 
•  2.4 GHz AMD Opteron dual-
processor 
•  8 GB of memory/node 
•  2x250GB local disks 
•  Disk I/O: 55 MB/sec 

 Query: “Maximize average classification confidence within 
time t” 



Multiple Granularity Workflows 
Map Images into Atlas, Measure Gene

 Expression 

Fuse components into metacomponents 
Tasks associated with metacomponent managed by execution module 
Pegasus, DataCutter,  Condor used to support multiple grained workflow 



Performance Impact  of Combined Coarse and
 Fine Grained Workflows 



Data Science Research Challenges Driven by
 In Silico Discovery Research 

•  Data integration  that targets multiple data sources with
 conflicting metadata and conflicting data 

•  Efficient methods for semantic query that targets
 questions involving complex multi-scale features
 associated with petascale and exascale ensembles of
 highly annotated images 

•  Computer assisted annotation and markup for very large
 datasets 

•  Systems to support combinations of structured and
 irregular accesses to exascale datasets 



 Data Science Research Challenges 

•  Structural and semantic metadata management: how to
 manage tradeoff between flexibility and curation 

•  Data and semantic modeling infrastructures and policies
 able to scale to handle distributed systems with an
 aggregate of 10*9 or more data models/concepts 

•  Three dimensional (time dependent) reconstruction,
 feature detection and annotation of 3-D microscopy
 imagery 

•  Workflow infrastructure for large scale data intensive
 computations 



Final Data Science Challenge: 
Large Dataset Size   

–  Basic small mouse is 10 cm3 

–  1 µ resolution –  very roughly 
1013 bytes/mouse 

–  Molecular data (spatial location) 
multiply by  102 

–  Vary genetic composition, 
environmental manipulation, 
systematic mechanisms for 
varying genetic expression; 
multiply by  103 

Total: 1018 bytes per big science  
animal experiment 
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