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Squeezing Information from Temporal Spatial
Datasets

» Leverage exascale data and
computer resources to
squeeze the most out of
Image, sensor or simulation
data

» Run lots of different algorithms
to derive same features

» Run lots of algorithms to derive
complementary features

» Data models and data
management infrastructure to
manage data products, feature
sets and results from
classification and machine
learning algorithms

N » Much can be done at “data
[NSTITUTE

staging time”



Overview

Integrative biomedical informatics analysis
—feature sets obtained from Pathology and
Radiology studies

This is the same CS problem as what we have
seen in Oil Reservoir/Seismic analyses,
astrophysics and in Computational Fluid
Dynamics

Techniques, tools and methodologies for
derivation, management and analysis of feature
sets

|deas for how to move to exascale
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Examples

Astrophysics | Which portions of a star’s core are | Compute streamlines on
susceptible to implosion over time | vector field v within grid points
period [tl,t2] ? [(xI,y1)-(x2,y2)]

Material Is crystalline growth likely to occur | Compute likelihood of local
Science within range [p1, b2] of pressure | cyclic relationships among

conditions ?

nanoparticles within a frame

Cancer studies

Which regions of the tumor are
undergoing active angiogenesis in
response to hypoxia ?

Determine image regions
where (blood vessel density >
20) and (nuclei and necrotic
region are within 50 microns of
each other)




Typical data analysis scenario

Transformation of raw image data \

* Normalization: illumination.

- Spatial Alignment: displacements

« Stitching: seamless image mosaic

« Warping: standard template / canonical
atlas

| ° Pixel-based L v ”"""1 |
| computing I [ S I
I * Color I s I |
I decomposition I | computing b AR e I
: *Correcting for : I - Segmentation : : « Annotation of data :
; hon uniform I : * Feature extraction, | | ° Semantic querying I
\ staining 1/ Cclassification / \ °Image mining /
N o 7’ N e . —— — ———————— 4 N e e ”
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INTEGRATIVE BIOMEDICAL INFORMATICS
ANALYSIS

Reproducible anatomic/functional characterization at
gross level (Radiology) and fine level (Pathology)

Integration of anatomic/functional characterization with
multiple types of “omic” information

Create categories of jointly classified data to describe
pathophysiology, predict prognosis, response to
treatment

In Silico Center — Application Driven Computer
Science (with National Cancer Institute flavor)
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In Silico Center for EMORY
Brain Tumor Research

Specific Aims:

1. Influence of necrosis/
hypoxia on gene expression and
genetic classification.

2. Molecular correlates of high
resolution nuclear morphometry.

3. Gene expression profiles
that predict glioma progression.

4.  Molecular correlates of MRI
enhancement patterns.




TCGA Research Network

Molecular Analytes Clinical Data
From BCR '

v l \ 4

DNA Copy DNA Methylation| | Transcriptome |
Sequencing Number Analysis Analysis Analysis

A 4 A 4 v v
Genome Agilent Human Genome lllumina Affymetrix Human

Sequencing CGH Microarray 244A GoldenGate Genome U133
Centers Memortal Sioan-Ke#ering Cancer BeadArray Plus 2.0 Amray

Center
5 A= Johns Hopkins and Univ Broad Insitule
Broad Instttute Institute Southern California

Washington University

bl Affymetrix Genome Agilent 244K Array

l Wide SNP Aray 6.0 University of Norih Carolina
Lineberger Cancer Center

S Se a Broad Institute and Dana Farber
anger quencing Cancer Instifute §
Affymetrix
Phase | Genes L
Phase Il Genes lllumina Infinium gf"e?fg%?llman
550K BeadChip on 1.0 ST Array

Lawrence Berkeley

Hudson-Alpha Institute

' Neuroimaging

Copy Number
Change Consensus

v

Integrated
Multi-Dimensional
Analysis




Integration of heterogeneous multiscale

information
ww caBIG
‘Coordinated initiatives
Pathology, Radiology, Radiology
“omics” Imagin
*Exploit synergies
between all initiatives Patient

“Omic”
Data

Outco

to improve ability to e

forecast survival &
response.

athologi
Features
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Oligodendroglioma




Vessel Characterization

Bifurcation detection




Progression to GBM

Anaplastic Astrocytoma
(WHO grade IlI)

Glioblastoma
(WHO grade V)

SCHOOL OF
MEDICINE

EMORY




Astrocytoma vs Oligodendroglima
Overlap in genetics, gene expression, histology

Astrocytoma vs Oligodendroglima

« Assess nuclear size (area and
perimeter), shape (eccentricity,

. circularity major axis, minor axis,
Fourier shape descriptor and extent
ratio), intensity (average, maximum,
minimum, standard error) and texture
(entropy, energy, skewness and
kurtosis).
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Machine-based Classification of TCGA GBMs (J Kon

Whole slide scans from 14 TCGA GBMS (69 slides)

7 purely astrocytic in morphology; 7 with 2+ oligo component
399,233 nuclei analyzed for astro/oligo features

Cases were categorized based on ratio of oligo/astro cells

1
# oligoD
» oligo 2+

Low-to-high grade nuclei ratio

TCGA Gene
Expression Query:
c-Met overexpression

1 1
30 40
Imageindex




EMORY | Center for Comprehensive

UNIVERSITY Informatics

Classification Performance

SFFS + 10% Filtering + 100 runs

. . . Reactive
Neoplastic Neoplastic Reactive Astrocvte Junk
Astrocyte Oligodendrocyte Endothelial y

Neoplastic 91.89% 1.82% 2.88%, 2.25% 1.16%

Astrocyte

Neoplastic 1.53%, 95.60% 1.10% 0.14% 1.62%

Oligodendrocyte

o 4.87% 0.53% 88.96% 2.18% 3.47%

Reactive Astrocyte 5.37% 1.54% 6.21% 85.62% 1.27%

2.86% 1.34% 5.24% 0.64% 89.93%



Nuclear Qualities

_

feature: Perimeter feature: Meanlintensity
T

T T T T T T T T T
I uclei of grade 1 I uclei of grade 1
I i of grade 10 I i uclei of grade 10

Which features carry most prognostic significance?
Which features correlate with genetic alterations?




Pipeline for Whole Slide Feature
Characterization

\

019 pixels for each whole slide image

0 whole slide images per patient

08 image features per whole slide image
0,000 brain tumor patients

015 pixels

03 features

Hundreds of algorithms

Annotations and markups from dozens of
humans

\

\

\

\
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Feature Management and Query Framework

| Metadata XML Schema Schema Annotation T
7 Interface
Metadata Database Service
Schema Interface
Image
Analysis
: Image &
A|gonthms _ Metadata
o e oo Viewer
H - —
Results & = ©
Document g S 3 | |:| Aoblicati
Generator = = Pg Ication
(o]
. g
Analytical
Workflow
In Silico Experiments Repository
i Image Data
i g Management

National Cancer |Instifute
\

w~ cancer Biomedical Pl 5 1
. caBIG"™ ‘iormatics Grig™  an initiative of t



Data Models to Represent Feature Sets and
Experimental Metadata

PAIS |pas| : Pathology Analytical Imaging Standards
Provide semantically enabled data model to support pathology
analytical imaging
Data objects, comprehensive data types, and flexible relationships
Reuse existing standards

Data models (in general) likely route to integrating staging,
immediate on line analyses and full scale analyses

Semantic models/annotations

Semantic directed runtime compilation that embedded various
partitioners (work with Kennedy, Fox)

v T\ /
' - n
. caBIG" “jncersomedics.  an initiative of tHENENEIEINeERIS LI TE




WholeSlidelmageReference

TMAImageReference

!

47 Region

MicroscopylmageReference

PAIS

o
~ Subject Patient
DICOMImageReference
%7 ! ! Specimen
ImageReference 1 o
o.* 0.1
User o 11 0.1 |AnatomicEntity
i 1
0.1
Group ! ! Equipment
0.1
0.1 1 PAIS
Project !
0.1 ! 1 0* AnnotationReference
0¥ 1 /N1 1
Collection
* 0..* *
1 0. 0.
Marku Annotation .
o P 0. 0.1 0.
0.*
= 1
Z% 1
| Zr 0.* 0.* 0.*
GeometricShape Surface Field Observation Calculation Inference
0.1
cancer Biome Provenance
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Compute Intersection Ratio and Distance B
Markups from Two Segmentation Algorith

INSERT INTO PAIS.VALIDATION PRECOMPUTE(pais uid, tilename, markup_ id,
AREA OVERLAP_RATIO, centroid distance)
SELECT A.pais uid, A.tilename, A.markup id,
CAST(db2gse.ST Area(db2gse.ST Intersection(a.polygon,b.polygon))/db2gse.ST Area
(db2gse.ST Union( a.polygon, b.polygon)) AS DECIMAL(4,2)) AS area ratio,
CAST( db2gse.ST Distance(db2gse.ST Centroid(b.polygon),db2gse.ST Centroid(a.polygon))
AS DECIMAL(5,2) ) AS centroid distance
FROM pais.markup polygon A, pais.markup polygon B
WHERE A.pais uid ='oligoIII.2 20x 20x NS-MORPH 1' AND
A.tilename='01igoIIIl.2.ndpi-0000090112-0000024576" AND
B.pais uid ='oligoIII.2 20x 20x NS-MORPH 2' AND
B.tilename ='o01igoIII.2.ndpi-0000090112-0000024576"' AND
db2gse.ST Intersects(A.polygon, B.polygon) = 1;

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

1D < ||
10,422,160,945,100,002

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,003

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,004

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,005

astroll.1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,006

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,007

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,008

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,009

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,010

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,011

astroll.1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,012

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,013

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,014

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,015

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,016

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,017

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,017

astroll.1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,018

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,019

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,020

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,021

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,022

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,023

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,024

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,025

astroll. 1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,026

astroll.1_20x_20x_NS-MORPH_1

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,066

astroll. 1.ndpi-0000004096-0000004096

10,422,160,945,100,085

astroll. 1_20x_20x_NS-MORPH_1
e
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Example TCGA Query: Mean Feature &7 — '
Vector and Feature Covariance . T A

e Mean feature vector for each slide and tumor subtype

SELECT AVG(area), AVG(sum_canny pixel), AVG(mean_canny pixel)

FROM pais.calculation_flat c, tctga.patient charateristic pc, pais.patient p
WHERE p.patientid = pc.patient_id AND p.pais_uid = c.pais_uid

GROUP BY c.pais_uid, pc.subtype;

e (Covariance between features

SELECT

COVARIANCE (PERIMETER, AREA) AS COV_PERIMETER_AREA,

COVARIANCE (PERIMETER, ECCENTRICITY) AS COV_PERIMETER_ECCENTRICITY
FROM pais.calculation_flat
WHERE PAIS UID ='TCGA-06-0152-01Z-00-DX7_20x_20x_NS-MORPH_1';

w caBIG



Analysis framework architecture

——

Workflow design :o ooooooooooooooo m:Mrr

: metadata

map high-level queries to
low-level execution plans

Ontology representations of
(based on metadata properties)

* datasets
« application structure
« application behavior

Ridge N

\osystem components J

nitiative g

(- Runtime support for muItidimensio}aI
data

« Data management, I/O abstraction

- Workflow engines, filter streaming

\middleware, batch schedulers /




Execution Module: Runtime support for
multidimensional data

Customize for specific domains
> Qut-of-core Virtual Microscope node01

Out-of-core data!?
o Data stored as a collection of chunks

o Chunk: unit of data management (disk I/O,
indexing and compression)

node02 \

Data model
> Data spatially partitioned into chunks

Thresholder Thresholder

Tcsscl@ Escllati on
)

Semi-streaming programming model -
4
> Leverages lightweight filter-streaming, buffer d b
. . retix Sum Prefix sum
management by streaming middleware (e.g.,

DataCutter, IBM System S)

o Chunks distributed across nodes in a shared-
nothing environment

September 8, 2010 Oak Ridge National Laboratory 24



Mediators: |/O abstraction layer

Compute
Nodes
Active =
Storage
Nodes
Cluster 1
(m nodes)

Cluster 2
(p nodes)

@: Application filters

: Mediator filters

Archival
Nodes

Cluster 3
(n nodes)

September 8, 2010 Oak Ridge National Laboratory 25



In Transit Processing using DataCutter
Spatial Crossmatch

« Mapping to atlas and 3-D reconstruction o1 @z a3 on Muitpie
frequently rely on spatial crossmatch © © © @ i
 We have studied spatial crossmatch with
LLNL initially in an astronomy context ( — ' T s

« Large Synoptic Survey Telescope (LSST)

-- 3.2 Gigapixel camera that captures g gt | Al .
field of view every 15 seconds - I et
« Catalog roughly 50 billion objects in 10 - -@\@\@ - @ besed)
years
* Netezza (active disk) implementation vs . ‘ . ‘

two DataCutter based distributed mySQL
implementations

« Benchmarked on Netezza and small (16 (¢) Configuration 3
node) cluster

+ Muitiple Concurrent Querles
(high throughput)

+ Joins executed at backend

+ Memory-based storage

+ Non-transactional storage engin
+ User-controlied data partitioning

Informatics Grid ™




Semantic Workflows (Wings)
Collaborative Work with Yolanda Gil, Mary Hall

« A systematic strategy for composing application
components into workflows

« Search for the most appropriate implementation of
both components and workflows
« Component optimization

— Select among implementation variants of the same
computation

— Derive integer values of optimization parameters

— Only search promising code variants and a restricted
parameter space

 Workflow optimization
— Knowledge-rich representation of workflow properties

£ L . -, b
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Whole-slide Image

Classification map

Adaptivity

Image chunk

Yes

Chunk
“finalized”

~ cancer Biomedical
caBIG "~ ormatics Gria™

an initiative of th

[multi-resolution decomposition]7

segmentation
5] |
f’ feature
No : extraction
R
- classification [
J/

WY
National Cancer |Institute
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Time-constrained Classification: Sample Result

Query: “Maximize average classification confidence within

H ’
time £
9.46 T T T T T N T
No paraneter tuning
Hith tuning of ’“processing order” and ’“resolution’” paraneters
8.44 B
8.42 ]
* 32 node cluster
* 2.4 GHz AMD Opteron dual-
8.4 .

processor
* 8 GB of memory/node
» 2x250GB local disks

* Disk 1/0: 55 MB/sec

Average confidence
®
L]
W
=)
T

8.34
8.32
8.3 Wm |
'
8.28 ‘W -
B .26 1 1 1 1 1 1
a 1600 2000 3000 4000 560060 66000

Processing Tine (s}

Heuristics determine more favorable chunks at an earlier point of time

* Tune ‘order of execution’ of chunks and ‘data resolution’ parameter per chunk

September 8, 2010 Oak Ridge National Laboratory 29



Multiple Granularity Workflows
Map Images into Atlas, Measure Gene

Expression

Fuse components into metacomponents
Tasks associated with metacomponent managed by execution module
Pegasus, DataCutter, Condor used to sup ort multiple grained workflow

\
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Performance Impact of Combined Coarse and
Fine Grained Workflows

3000 T T —T
Low task granularity ——
High task granularity (metacomponents) C—
2500
§ 2000
= 1500
2
s -
o 1000
n
500
0 [ 1 I
Ful workfiow  zpeoject nomaize  reoganid  autoaign wap
Component

' et ¥ Nt InTormancs Grna - R T “ I.“I




Data Science Research Challenges Driven by
In Silico Discovery Research

Data integration that targets multiple data sources with
conflicting metadata and conflicting data

Efficient methods for semantic query that targets
guestions involving complex multi-scale features
associated with petascale and exascale ensembles of
highly annotated images

Computer assisted annotation and markup for very large
datasets

Systems to support combinations of structured and
Irregular accesses to exascale datasets
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Data Science Research Challenges

Structural and semantic metadata management: how to
manage tradeoff between flexibility and curation

Data and semantic modeling infrastructures and policies
able to scale to handle distributed systems with an
aggregate of 10*9 or more data models/concepts

Three dimensional (time dependent) reconstruction,
feature detection and annotation of 3-D microscopy
Imagery

Workflow infrastructure for large scale data intensive
computations

v N Y
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Final Data Science Challenge:
Large Dataset Size =

— Basic small mouse is 10 cm?3

N

— 1 J resolution — very roughly
103 bytes/mouse

— Molecular data (spatial location)
multiply by 1072

— Vary genetic composition,
environmental manipulation,
systematic mechanisms for
varying genetic expression;
multiply by 103

Total: 10'8 bytes per big science -
Computational

anlmal experlment Iletabollte » blOlOgy High_content
analytics screening

v \\
National Cancer |IAsStitute
| -
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Thanks to:

Tahsin Kurc, Vijay Kumar

In silico center team: Dan Brat (Science PIl), Tahsin Kurc, Ashish
Sharma, Tony Pan, David Gutman, Jun Kong, Sharath Cholleti, Carlos
Moreno, Chad Holder, Erwin Van Meir, Daniel Rubin, Tom Mikkelsen,
Adam Flanders, Joel Saltz (Director)

caGrid Knowledge Center: Joel Saltz, Mike Caliguiri, Steve Langella
co-Directors; Tahsin Kurc, Himanshu Rathod Emory leads

caBIG In vivo imaging team: Eliot Siegel, Paul Mulhern, Adam
Flanders, David Channon, Daniel Rubin, Fred Prior, Larry Tarbox and
many others

In vivo imaging Emory team: Tony Pan, Ashish Sharma, Joel Saltz

Emory ATC Supplement team: Tim Fox, Ashish Sharma, Tony Pan, Edi
Schreibmann, Paul Pantalone

Digital Pathology R01: Foran and Saltz; Jun Kong, Sharath Cholleti,
Fusheng Wang, Tony Pan, Tahsin Kurc, Ashish Sharma, David
Gutman (Emory), Wenjin Chen, Vicky Chu, Jun Hu, Lin Yang, David J.
Foran (Rutgers)
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