
1 CCGSC 2010, Ashville, September 2010

Design and implementation of parallel
 algorithms for highly heterogeneous

 HPC platforms

Dave	
 Clarke,	
 Alexey	
 Lastovetsky,	
 Ravi	
 Reddy,	
 Vladimir	
 Rychkov	

School	
 of	
 Computer	
 Science	
 and	
 Informa4cs	

University	
 College	
 Dublin	

Alexey.Lastovetsky@ucd.ie	

hBp://hcl.ucd.ie	
 	

2

Motivation

•  Traditional mainstream parallel computing systems
–  Used to be homogeneous

»  At least, at the application level
–  Parallel algorithms

»  Try to distribute computations evenly

•  New trend in mainstream parallel computing systems
–  Heterogeneous processing devices

»  Heterogeneous cores, accelerators (GPUs)
»  Heterogeneous clusters
»  Clusters of clusters

3

Motivation (ctd)

•  New heterogeneous parallel algorithms needed
–  To distribute computations between heterogeneous

 processing devices unevenly
»  Ideally, in proportion to their speed

4

Motivation (ctd)
•  Since mid 90s, fundamental heterogeneous parallel

 algorithms for scientific computing have been designed
–  Introduced a new type of parameters representing the performance

 of processors
–  Significantly outperformed their homogeneous counterparts

»  Heterogeneous clusters of workstations (main target platform)
»  Given the performance parameters are accurate

•  Can we use these algorithms for the new platforms?
–  Not quite

•  Why?
–  The performance parameters are constants

»  Assuming the (relative) speed of the processors does not depend on
 the sizes of computational tasks

5

Motivation (ctd)

•  Constant performance models (CPMs) are sufficiently accurate if
–  All processors are general-purpose of traditional architecture, and
–  Same code used for local computations on all processors, and
–  Computational task assigned to each processor is small enough to fit into

 main memory and big enough not to fully fit into cache.

6

Motivation (ctd)
•  The assumption of constant speed may not be accurate if

–  Some tasks either fitting into cache or not fitting into main memory, or
–  Some processing units are not traditional (GPUs, specialised cores), or
–  Different processors use different codes for local computations

7

Motivation (ctd)

•  Applicability of CPMs and CPM-based algorithms
–  The more different P1 and P2, the smaller will be the range of sizes R12

 where their relative speed can be accurately approximated by a constant
–  If the number of significantly different PUs is large enough, then region

 ∩Rij of applicability of CPM-based algorithms can be very small

8

Functional performance model (FPM)

•  CPM-based algorithms
–  Very restricted for highly heterogeneous platforms
–  Never cover the full range of problem sizes

•  Solution:
–  Use FPM to define the performance of processing units

» The absolute speed of processor is represented by a function of
 problem size rather by a constant

» Natural, simple and general (applicable to any processing unit)
•  No architectural parameters

–  Use FPM to design heterogeneous parallel algorithms

9

FPM-based algorithms

•  We have studied the following problem
–  Given

»  A set of n elements (say, representing equal computation units)
»  A well-ordered set of p processors whose speeds are continuous

 functions of the size of problem, si=fi(x),

–  Partition the set into p sub-sets such that

»  The partitioning minimizes ,

where ni is the number of elements allocated to processor Pi

10

FPM-based algorithms (ctd)

•  Partitioning algorithms are based on the observation:

11

FPM-based algorithms (ctd)

•  A typical algorithm works as follows:

12

FPM-based algorithms (ctd)

•  A number of algorithms have been designed
 and validated using the FPM-based
 partitioning
– Linear algebra

» 1D LU factorisation
» 2D matrix multiplication

– Database applications (TPC-H Benchmark)
– Different platforms

» Heterogeneous computational clusters
» Multicore and accelerator based desktop systems

13

FPM-based algorithms (ctd)

•  Implementation issues FPM-based algorithms
–  FPMs of the processing units are input parameters

»  The efficiency of applications depends on the accuracy and
 “quality” of the FPMs

»  In general, FPMs are multi-dimensional surfaces (not just curves)
–  FPM construction issues

»  Accuracy
»  Quality
»  Efficiency

14

FPM-based algorithms (ctd)

The cost of constructions of FPMs can
 be very high

=> The FPM-based algorithms using FPMs as
 input parameters

  cannot be used in self-adaptable applications
  still can be used in applications repeatedly
 running in a stable environment

•  FPMs are constructed once and used multiple times

15

FPM-based algorithms for self-adaptable
 applications

•  Solution
–  Do not use full pre-defined FPMs for partitioning

»  Full FPMs are no longer input parameters of the partitioning
 algorithm

–  Use partial approximations of the FPMs instead, which are
»  Not predefined
»  Constructed for each particular problem size during the execution

 of the partitioning algorithm
»  Accurate enough for the required accuracy of partitioning
»  Covering the range of problem sizes just sufficient to solve the

 partitioning problem of the given size

16

Adaptive FPM-based partitioning algorithm

•  We study the following problem
–  Given

»  A set of n elements (say, representing equal computation units)
»  A well-ordered set of p processors whose speeds of processing x

 elements, si=si(x), can be obtained by measuring the execution
 time, t i(x) , of a computational kernel, si(x)=x/ti(x)

–  Partition the set into p sub-sets such that

where ni is the number of elements allocated to processor Pi

17

Adaptive partitioning algorithm (0)

18

Adaptive partitioning algorithm (1)

19

Adaptive partitioning algorithm (2)

20

Adaptive partitioning algorithm (3)

21

Adaptive partitioning algorithm (4)

22

Adaptive partitioning algorithm (5)

23

Adaptive FPM-based partitioning algorithm

•  The adaptive algorithm
–  Distributed

»  Involves all participating processors

•  Implementation issues
–  Mainly, FPM related
–  Accuracy

»  Higher accuracy of FPM  more accurate partitioning
–  Quality

»  Smoother approximations  faster convergence
–  Efficiency

»  Minimization of estimation cost
»  Minimization of the overall execution time

24

Experiments: matrix multiplication
•  Parallel matrix multiplication on a heterogeneous cluster

25

Experiments: matrix multiplication (ctd)
•  Partitioning matrices

26

Experiments: matrix multiplication (ctd)

27

Experiments: matrix multiplication (ctd)
Matrix

size
(n × n)

Total
execution time

(sec)

DFPA time
(sec)

DFPA
iterations

Matrix
multiplicatio

n (sec)

DFPA
cost
(%)

8192 61.91 0.17 16 61.74 0.28
9216 65.91 0.14 11 65.76 0.21
10240 105.22 0.19 13 105.02 0.18
11264 137.34 0.22 15 137.11 0.16
13312 246.49 5.84 44 240.65 2.36
14336 264.45 16.25 62 248.20 6.14
15360 311.28 24.06 69 287.22 7.73
16384 448.27 28.44 71 419.83 6.34
17408 483.23 52.51 69 430.71 10.86

28

Experiments: Load balancing of iterative
 routines

•  n computational units distributed across p processors.
•  Processor Pi has di units such that
•  Initially di

0 = n / p
•  At each iteration

–  Execution times measured and gathered to root
–  if relative difference between times ≤ ε

then no balancing needed
else new distribution is calculated as:

 where speed

–  New distributions di
k+1 broadcast to all processors and where necessary

 data is redistributed accordingly

29

Experiments: Load balancing of iterative routines
 (ctd)

•  Speed of each processor is considered as a constant
 positive number at each iteration.

•  Within the range of problem sizes for which this is
 true, traditional algorithms can successfully load
 balance.

•  Can fail for problem sizes for which the speed is not
 constant.

30

Experiments: Load balancing of iterative
 routines (ctd)

31

Experiments: Load balancing of iterative
 routines (ctd)

•  Iterative Routine
Jacobi method for solving a system of linear equations

•  Experimental Setup

 n = 8000 n = 11000

P1 P2 P3 P4

Processor 3.6 Xeon 3.0 Xeon 3.4 Xeon 3.4 Xeon

Ram (MB) 256 256 512 1024

32

Experiments: Load balancing of iterative
 routines (ctd)

33

Experiments: Load balancing of iterative
 routines (ctd)

•  Our algorithm is based on models for which speed is
 a function of problem size.

•  Load balancing achieved when:

34

Experiments: Load balancing of iterative
 routines (ctd)

•  First iteration
Point (n / p, si

0) with speed

First function approximation si’(d) = si
0

•  Subsequent iterations
Point (di

k, si
k) with speed

Function approximation updated by adding the point

35

Experiments: Load balancing of iterative
 routines (ctd)

36

Experiments: Load balancing of iterative routines
 (ctd)

37

Experimental setup
•  Heterogeneous cluster

–  16 P4/Xeon/AMD/Celeron processors with Linux
»  See http://hcl.ucd.ie/Hardware/Cluster+Specifications for detailed specs

–  2 Gigabit interconnect
–  Software

»  MPICH-1.2.5
»  ATLAS

–  Processor speeds in million flop/s (C+=A×B, A=2560×16, B=16×2560)
»  {7696, 5196, 7852, 14418, 8000, 8173, 7288, 7396, 9037, 8987, 13661,

 14194, 11182, 14410, 12008, 15257}
»  Indicative heterogeneity of the cluster ≈ 3

Conclusions

•  New parallel computing platforms are built from
 increasingly heterogeneous processing devices

•  Traditional heterogeneous parallel algorithms become
 less and less applicable

•  Our solution: algorithms based on the functional
 performance models

