Design and implementation of parallel algorithms for highly heterogeneous HPC platforms

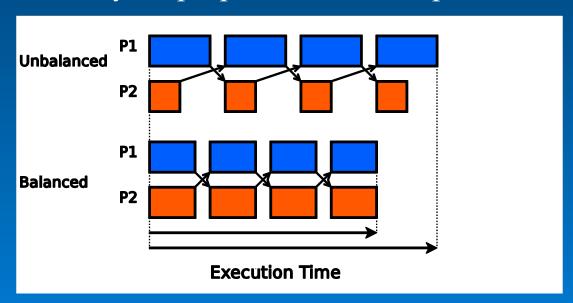
Dave Clarke, Alexey Lastovetsky, Ravi Reddy, Vladimir Rychkov

School of Computer Science and Informatics
University College Dublin
Alexey.Lastovetsky@ucd.ie
http://hcl.ucd.ie

Motivation

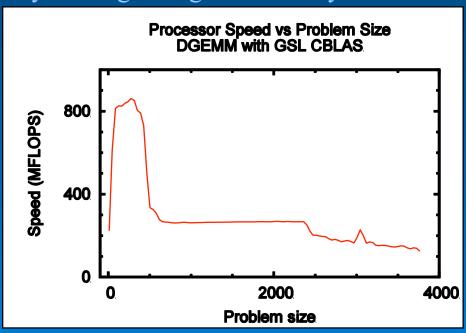
- Traditional mainstream parallel computing systems
 - Used to be homogeneous
 - » At least, at the application level
 - Parallel algorithms
 - » Try to distribute computations evenly
- New trend in mainstream parallel computing systems
 - Heterogeneous processing devices
 - » Heterogeneous cores, accelerators (GPUs)
 - » Heterogeneous clusters
 - » Clusters of clusters

- New <u>heterogeneous</u> parallel algorithms needed
 - To distribute computations between heterogeneous processing devices unevenly
 - » Ideally, in proportion to their speed

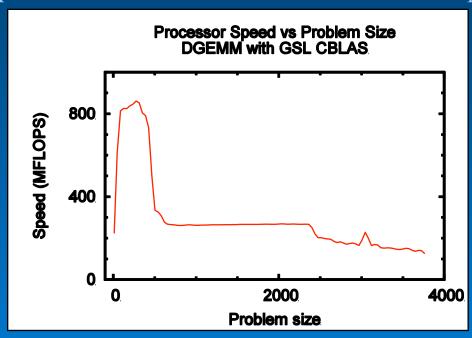


- Since mid 90s, fundamental heterogeneous parallel algorithms for scientific computing have been designed
 - Introduced a new type of parameters representing the performance of processors
 - Significantly outperformed their homogeneous counterparts
 - » Heterogeneous clusters of workstations (main target platform)
 - » Given the performance parameters are accurate
- Can we use these algorithms for the new platforms?
 - Not quite
- Why?
 - The performance parameters are constants
 - » Assuming the (relative) speed of the processors does not depend on the sizes of computational tasks

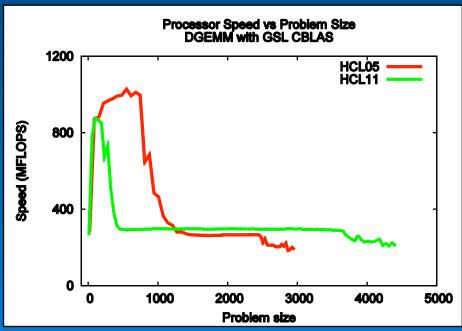
- Constant performance models (CPMs) are sufficiently accurate if
 - All processors are general-purpose of traditional architecture, and
 - Same code used for local computations on all processors, and
 - Computational task assigned to each processor is small enough to fit into main memory and big enough not to fully fit into cache.



- The assumption of constant speed may not be accurate if
 - Some tasks either fitting into cache or not fitting into main memory, or
 - Some processing units are not traditional (GPUs, specialised cores), or
 - Different processors use different codes for local computations



- Applicability of CPMs and CPM-based algorithms
 - The more different P_1 and P_2 , the smaller will be the range of sizes R_{12} where their relative speed can be accurately approximated by a constant
 - If the number of significantly different PUs is large enough, then region $\bigcap R_{ij}$ of applicability of CPM-based algorithms can be very small



Functional performance model (FPM)

CPM-based algorithms

- Very restricted for highly heterogeneous platforms
- Never cover the full range of problem sizes

• Solution:

- Use FPM to define the performance of processing units
 - » The absolute speed of processor is represented by a function of problem size rather by a constant
 - » Natural, simple and general (applicable to any processing unit)
 - No architectural parameters
- Use FPM to design heterogeneous parallel algorithms

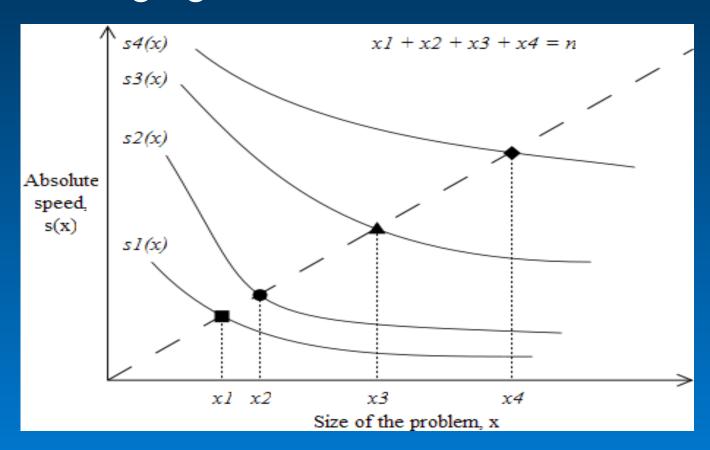
FPM-based algorithms

- We have studied the following problem
 - Given
 - » A set of n elements (say, representing equal computation units)
 - » A well-ordered set of p processors whose speeds are continuous functions of the size of problem, $s_i=f_i(x)$,
 - Partition the set into p sub-sets such that
 - » The partitioning minimizes $\max_{i} \frac{n_{i}}{s_{i}(n_{i})}$,

where n_i is the number of elements allocated to processor P_i

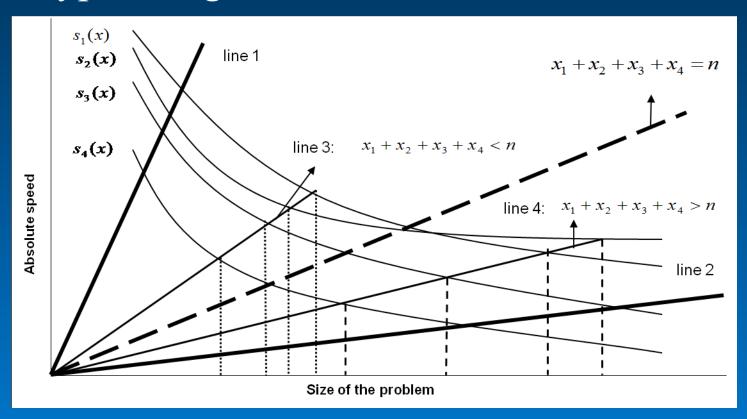
FPM-based algorithms (ctd)

• Partitioning algorithms are based on the observation:



FPM-based algorithms (ctd)

A typical algorithm works as follows:



 $\max_{i} \frac{n_{i}}{s_{i}(n_{i})}$

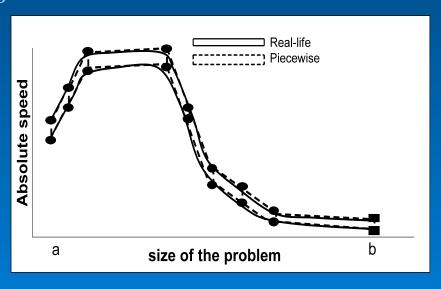
FPM-based algorithms (ctd)

- A number of algorithms have been designed and validated using the FPM-based partitioning
 - Linear algebra
 - » 1D LU factorisation
 - » 2D matrix multiplication
 - Database applications (TPC-H Benchmark)
 - Different platforms
 - » Heterogeneous computational clusters
 - » Multicore and accelerator based desktop systems

 $\max_{i} \frac{n_{i}}{s_{i}(n_{i})}$

FPM-based algorithms (ctd)

- Implementation issues FPM-based algorithms
 - FPMs of the processing units are input parameters
 - » The efficiency of applications depends on the accuracy and "quality" of the FPMs
 - » In general, FPMs are multi-dimensional surfaces (not just curves)
 - FPM construction issues
 - » Accuracy
 - » Quality
 - » Efficiency



FPM-based algorithms (ctd)

The cost of constructions of FPMs can be very high

- => The FPM-based algorithms using FPMs as input parameters
 - 8 cannot be used in self-adaptable applications
 - still can be used in applications repeatedly running in a stable environment
 - FPMs are constructed once and used multiple times

FPM-based algorithms for self-adaptable applications

Solution

- Do not use full pre-defined FPMs for partitioning
 - » Full FPMs are no longer input parameters of the partitioning algorithm
- Use partial approximations of the FPMs instead, which are
 - » Not predefined
 - » Constructed for each particular problem size during the execution of the partitioning algorithm
 - » Accurate enough for the required accuracy of partitioning
 - » Covering the range of problem sizes just sufficient to solve the partitioning problem of the given size

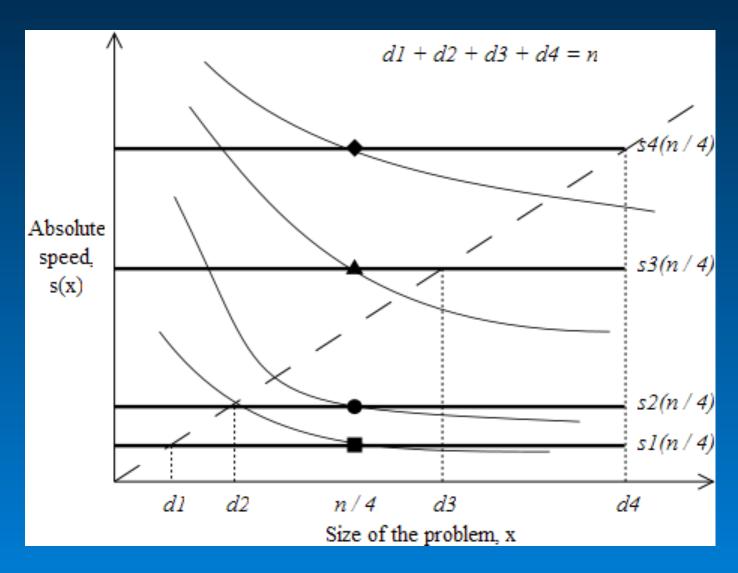
Adaptive FPM-based partitioning algorithm

- We study the following problem
 - Given
 - » A set of n elements (say, representing equal computation units)
 - » A well-ordered set of p processors whose speeds of processing x elements, $\mathbf{s_i} = \mathbf{s_i}(\mathbf{x})$, can be obtained by measuring the execution time, $\mathbf{t_i}(\mathbf{x})$, of a computational kernel, $\mathbf{s_i}(\mathbf{x}) = \mathbf{x}/t_i(\mathbf{x})$
 - Partition the set into p sub-sets such that

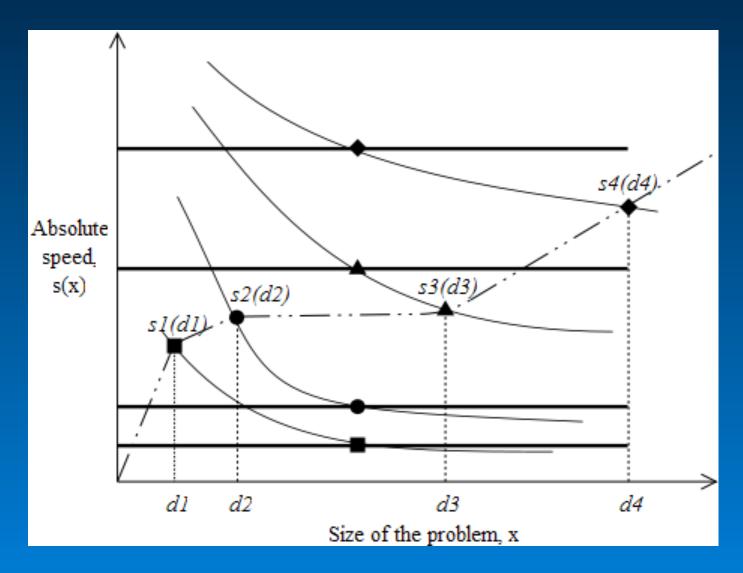
$$\max_{1 \le i, j \le p} \left(\left| \frac{t_i(n_i) - t_j(n_j)}{t_i(n_i)} \right| \right) \le \varepsilon$$

where n_i is the number of elements allocated to processor P_i

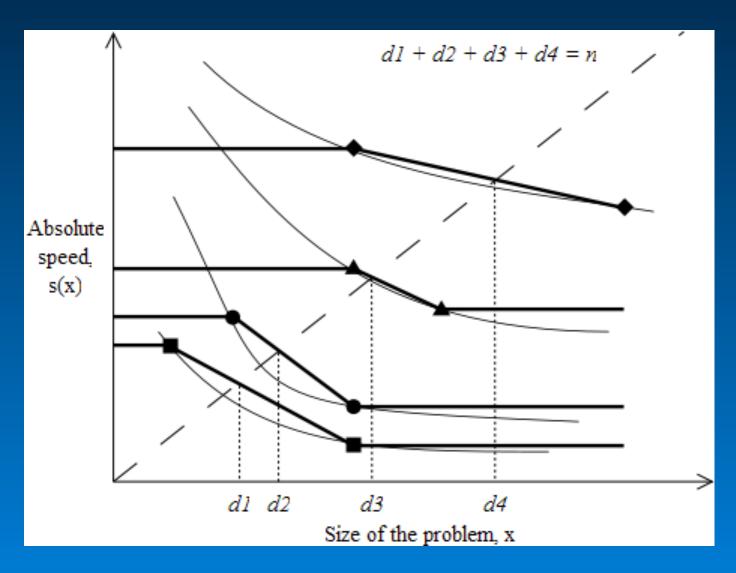
Adaptive partitioning algorithm (0)



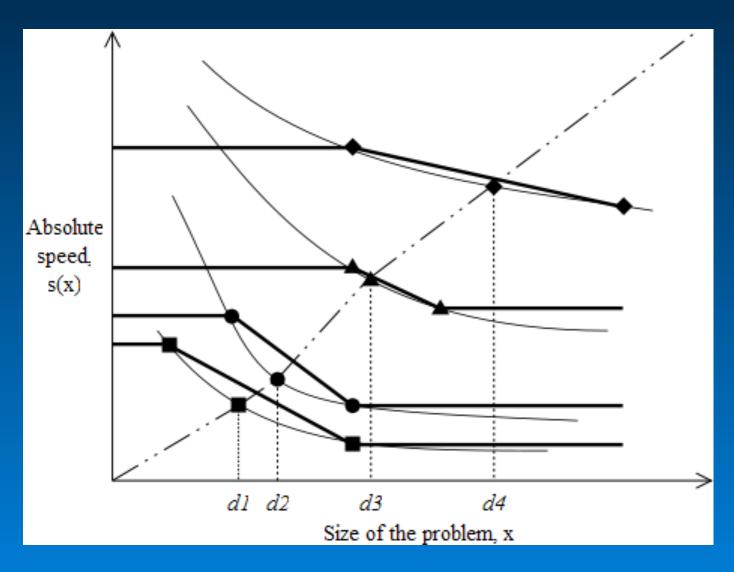
Adaptive partitioning algorithm (1)



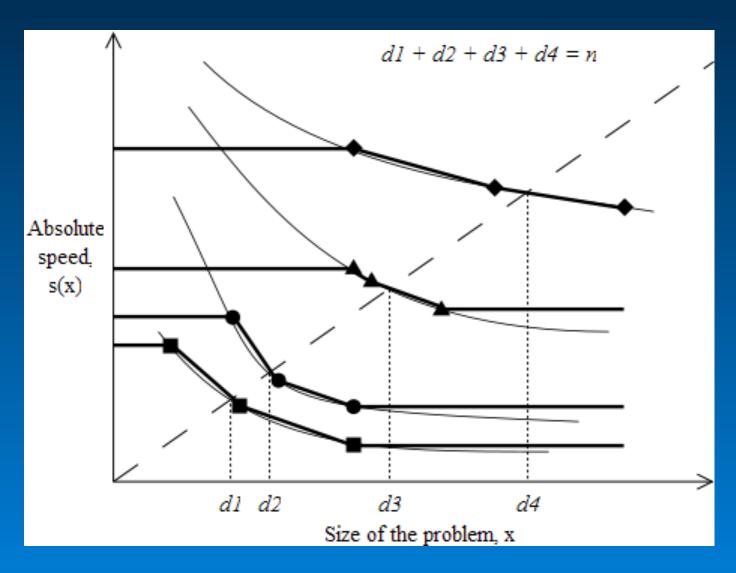
Adaptive partitioning algorithm (2)



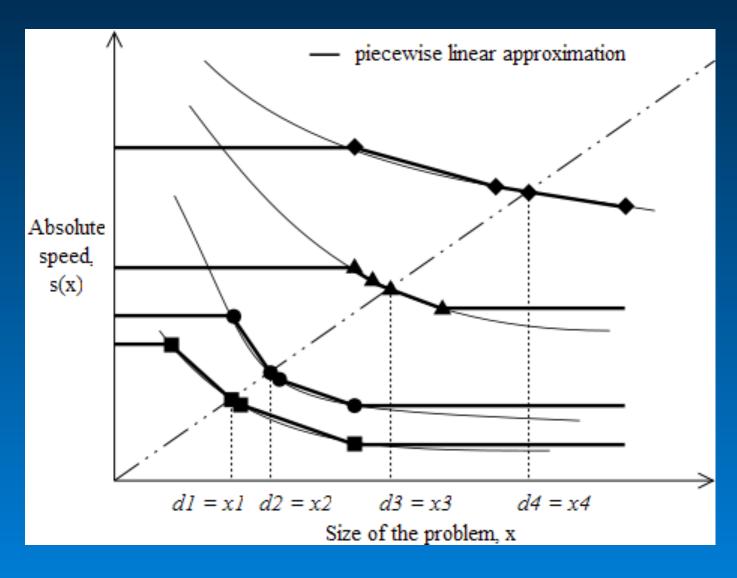
Adaptive partitioning algorithm (3)



Adaptive partitioning algorithm (4)



Adaptive partitioning algorithm (5)

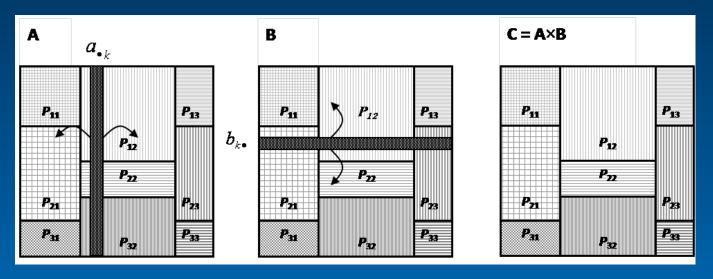


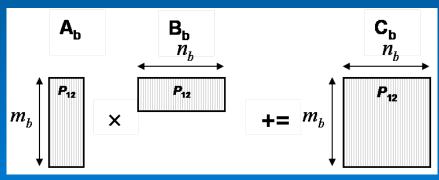
Adaptive FPM-based partitioning algorithm

- The adaptive algorithm
 - Distributed
 - » Involves all participating processors
- Implementation issues
 - Mainly, FPM related
 - Accuracy
 - » Higher accuracy of FPM → more accurate partitioning
 - Quality
 - » Smoother approximations → faster convergence
 - Efficiency
 - » Minimization of estimation cost
 - » Minimization of the overall execution time

Experiments: matrix multiplication

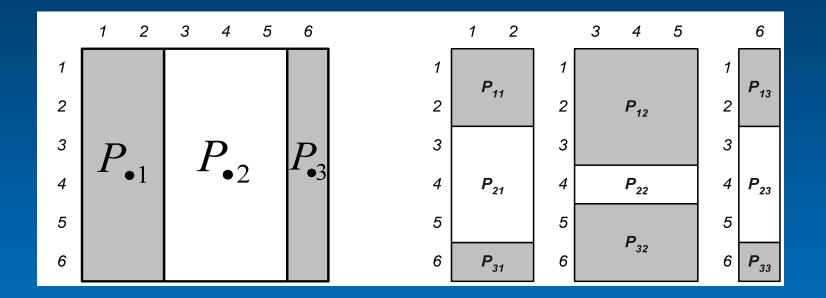
• Parallel matrix multiplication on a heterogeneous cluster



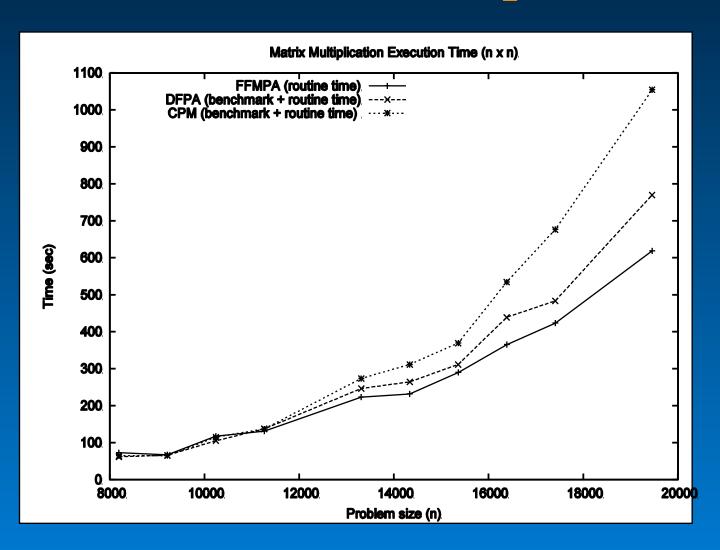


Experiments: matrix multiplication (ctd)

Partitioning matrices



Experiments: matrix multiplication (ctd)



Experiments: matrix multiplication (ctd)

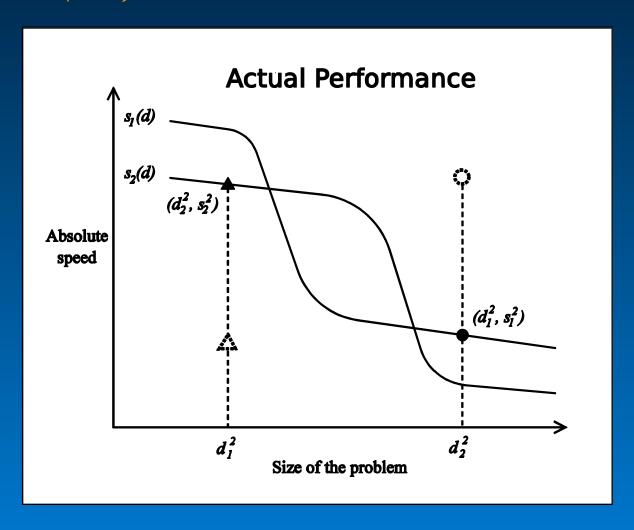
Matrix size $(n \times n)$	Total execution time (sec)	DFPA time (sec)	DFPA iterations	Matrix multiplicatio n (sec)	DFPA cost (%)
8192	61.91	0.17	16	61.74	0.28
9216	65.91	0.14	11	65.76	0.21
10240	105.22	0.19	13	105.02	0.18
11264	137.34	0.22	15	137.11	0.16
13312	246.49	5.84	44	240.65	2.36
14336	264.45	16.25	62	248.20	6.14
15360	311.28	24.06	69	287.22	7.73
16384	448.27	28.44	71	419.83	6.34
17408	483.23	52.51	69	430.71	10.86

- *n* computational units distributed across *p* processors.
- Processor P_i has d_i units such that $n = \sum d_i$
- Initially $d_i^0 = n / p$
- At each iteration
 - Execution times measured and gathered to root
 - if relative difference between times ≤ ε
 then no balancing needed
 else new distribution is calculated as:

$$d_i^{k+1} = n \times_{\text{where speed}} S_i^k = \frac{d_i^k}{t_i(d_i^k)}$$

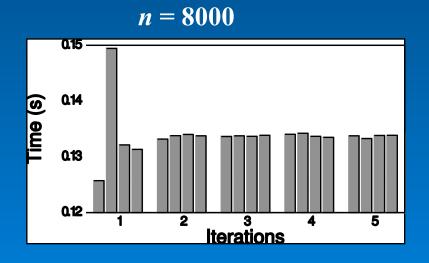
- New distributions d_i^{k+1} broadcast to all processors and where necessary data is redistributed accordingly

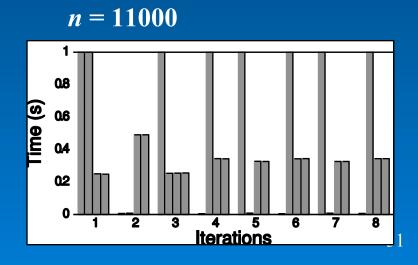
- Speed of each processor is considered as a constant positive number at each iteration.
- Within the range of problem sizes for which this is true, traditional algorithms can successfully load balance.
- Can fail for problem sizes for which the speed is not constant.

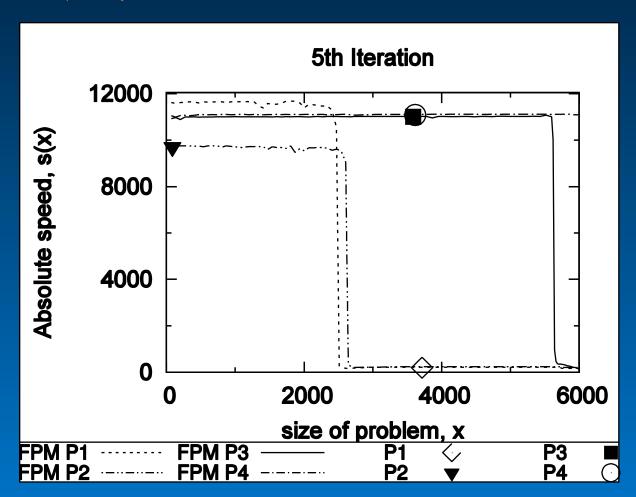


- Iterative Routine
 Jacobi method for solving a system of linear equations
- Experimental Setup

	P_1	P_2	P_3	$\mathbf{P_4}$
Processor	3.6 Xeon	3.0 Xeon	3.4 Xeon	3.4 Xeon
Ram (MB)	256	256	512	1024







- Our algorithm is based on models for which speed is a function of problem size.
- Load balancing achieved when:

$$t_1 \approx t_2 \approx \dots \approx t_p$$

$$\frac{d_1}{s_1(d_1)} \approx \frac{d_2}{s_2(d_2)} \approx \dots \approx \frac{d_p}{s_p(d_p)}$$

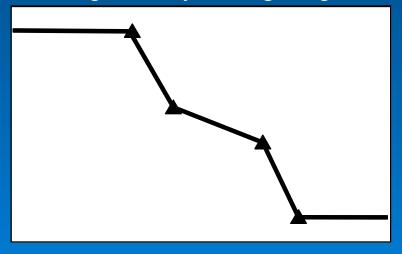
$$d_1 + d_2 + \dots + d_p = n$$

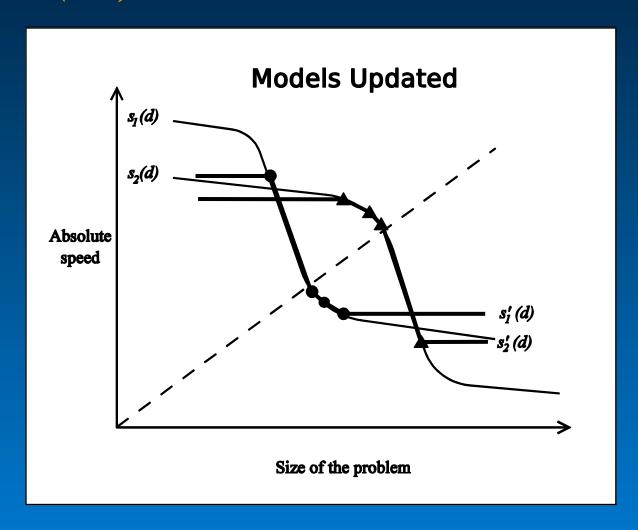
• First iteration
Point $(n/p, s_i^0)$ with speed $s_i^0 = \frac{n/p}{t_i(n/p)}$

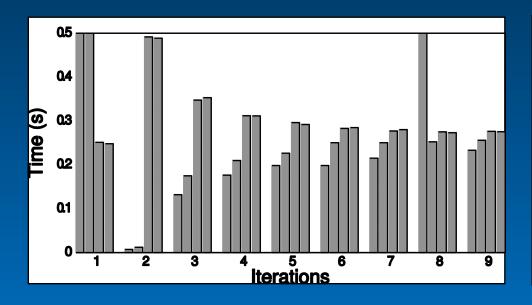
First function approximation $s_i'(d) = s_i^0$

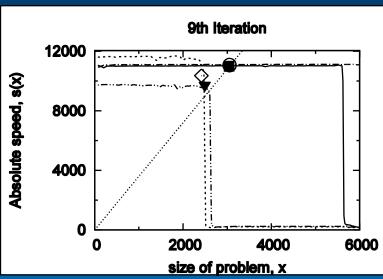
• Subsequent iterations
Point (d_i^k, s_i^k) with speed $s_i^k = \frac{d_i^k}{t_i(d_i^k)}$

Function approximation updated by adding the point









Experimental setup

- Heterogeneous cluster
 - 16 P4/Xeon/AMD/Celeron processors with Linux
 - » See http://hcl.ucd.ie/Hardware/Cluster+Specifications for detailed specs
 - 2 Gigabit interconnect
 - Software
 - » MPICH-1.2.5
 - » ATLAS
 - Processor speeds in million flop/s (C+=A×B, A=2560×16, B=16×2560)
 - » {7696, 5196, 7852, 14418, 8000, 8173, 7288, 7396, 9037, 8987, 13661, 14194, 11182, 14410, 12008, 15257}
 - » Indicative heterogeneity of the cluster ≈ 3

Conclusions

- New parallel computing platforms are built from increasingly heterogeneous processing devices
- Traditional heterogeneous parallel algorithms become less and less applicable
- Our solution: algorithms based on the functional performance models