

Computing in the Mist:
Writing Applications for Unknown Machines

Thilo Kielmann
VU University, Amsterdam

kielmann@cs.vu.nl

 How many cores does your computer have?
 Where is your data?
 What has happened to job number 2342?

ITRS Roadmap 2005 and 2007

[D. Patterson, USENIX 2008 keynote]

A Fundamental Technology Change

CPU's will get faster only marginally:
– limits of integration density
– energy consumption (proportional to clock rate)

 If you want a faster computer, you need to use
multiple CPU's:
– In the past, the clock rate has doubled every 18

months
– In the future, the number of cores will double

every 18-24 months
All programs must be parallel to use this new

hardware!

Intel's 80-Core Teraflop Chip Prototype

Intel's Tera Scale Vision

IBM's Cell: Heterogeneous Ensemble

Cell Performance Compared

[Dr. Michael Perrone, IBM]

Cell Programming: Master/Worker

PPE executes main program
SPE's execute sub tasks and return results
all communication between PPE and SPE's must be

programmed explicitly

[Cell Programming Primer, 2006 Sony]

Graphics Processing Units (GPU's)

Example: Nvidia's GeForce8800
– 8 x 16 blocks of stream processors
– separate thread schedulers
– crossbar-like access to graphics memory

GPU vs. CPU

Nvidia GeForce 8800
– clock speed 1.35 GHz
– 681 million transistors

 Intel Pentium 4
– clock speed 2.4 GHz
– 55 million transistors

[Schellmann et.al.,
Euro-PAR 2008]:

2 Nvidia GeForce
8800GTX as fast
as 16 Intel Xeon
3.2GHz

General Purpose GPU Programming

Nvidia's CUDA

Clusters: Beyond Single Computers
DAS3, VU Amsterdam:

Programming for Clusters

Distributed memory, high-speed networks
commonly: message passing (MPI), C and Fortran
academic: Java remote method invocation (Ibis)

deployment via shared file system and batch queue
scheduling

Clouds: Data Centers + Virtualization

(OK, a bit too simplified...)

Cloud Computing: Platform as a Service (PaaS)

Amazon Web Services:
– Elastic Compute Cloud (EC2)

• allows to dynamically create/remove virtual machines
with user-defined image (OS + application)

• payment for CPU per hour

– Simple storage Service (S3)
• provides persistent object storage, write-once objects
• payment for storage volume and transfer volume

Highly dynamic service provider for compute and
storage capacities

Programming Clouds: Hadoop

 implements the map-reduce paradigm
allows processing of large data sets
user defined map and reduce functions
Hadoop distributed file system (HDFS) built on top

of Amazon S3
Got popular due

to fault-tolerant,
file-based
implementation

Grid Computing

Thilo Kielmann, VU University Amsterdam 20

Grid Programming:
Globus GASS copies a file...

if (source_url.scheme_type == GLOBUS_URL_SCHEME_GSIFTP ||
 source_url.scheme_type == GLOBUS_URL_SCHEME_FTP) {
 globus_ftp_client_operationattr_init (&source_ftp_attr);
 globus_gass_copy_attr_set_ftp (&source_gass_copy_attr,
 &source_ftp_attr);
}
else {
 globus_gass_transfer_requestattr_init (&source_gass_attr,
 source_url.scheme);
 globus_gass_copy_attr_set_gass(&source_gass_copy_attr,
 &source_gass_attr);
}

output_file = globus_libc_open ((char*) target,
 O_WRONLY | O_TRUNC | O_CREAT,
 S_IRUSR | S_IWUSR | S_IRGRP |
 S_IWGRP);
if (output_file == -1) {
 printf ("could not open the file \"%s\"\n", target);
 return (-1);
}
/* convert stdout to be a globus_io_handle */
if (globus_io_file_posix_convert (output_file, 0,
 &dest_io_handle)
 != GLOBUS_SUCCESS) {
 printf ("Error converting the file handle\n");
 return (-1);
}

result = globus_gass_copy_register_url_to_handle (
 &gass_copy_handle, (char*)source_URL,
 &source_gass_copy_attr, &dest_io_handle,
 my_callback, NULL);
if (result != GLOBUS_SUCCESS) {
 printf ("error: %s\n", globus_object_printable_to_string
 (globus_error_get (result)));
 return (-1);
}
globus_url_destroy (&source_url);
return (0);
}

int copy_file (char const* source, char const* target)
{
globus_url_t source_url;
globus_io_handle_t dest_io_handle;
globus_ftp_client_operationattr_t source_ftp_attr;
globus_result_t result;
globus_gass_transfer_requestattr_t source_gass_attr;
globus_gass_copy_attr_t source_gass_copy_attr;
globus_gass_copy_handle_t gass_copy_handle;
globus_gass_copy_handleattr_t gass_copy_handleattr;
globus_ftp_client_handleattr_t ftp_handleattr;
globus_io_attr_t io_attr;
int output_file = -1;

if (globus_url_parse (source_URL, &source_url) != GLOBUS_SUCCESS) {
 printf ("can not parse source_URL \"%s\"\n", source_URL);
 return (-1);
}

if (source_url.scheme_type != GLOBUS_URL_SCHEME_GSIFTP &&
 source_url.scheme_type != GLOBUS_URL_SCHEME_FTP &&
 source_url.scheme_type != GLOBUS_URL_SCHEME_HTTP &&
 source_url.scheme_type != GLOBUS_URL_SCHEME_HTTPS) {
 printf ("can not copy from %s - wrong prot\n", source_URL);
 return (-1);
}
globus_gass_copy_handleattr_init (&gass_copy_handleattr);
globus_gass_copy_attr_init (&source_gass_copy_attr);

globus_ftp_client_handleattr_init (&ftp_handleattr);
globus_io_fileattr_init (&io_attr);

globus_gass_copy_attr_set_io (&source_gass_copy_attr, &io_attr);
 &io_attr);
globus_gass_copy_handleattr_set_ftp_attr
 (&gass_copy_handleattr,
 &ftp_handleattr);
globus_gass_copy_handle_init (&gass_copy_handle,
 &gass_copy_handleattr);

The Grid Application Toolkit (JavaGAT)

[SC'07]

Thilo Kielmann, VU University Amsterdam 22

JavaGAT Example: Copy a File
High-level, uniform

import org.gridlab.gat.*;
import org.gridlab.gat.io.File;

public class Copy {
 public static void main(String[] args)
 throws Exception {
 GATContext context = new GATContext();
 URI source = new URI(args[0]);
 URI dest = new URI(args[1]);
 // Create a GAT File object
 File file = GAT.createFile(context, source);
 file.copy(dest); // The actual file copy.
 GAT.end(); // Shutdown the JavaGAT.
 }
}

• Provides the high level abstraction, that application programmers
need; will work across different systems

• Shields gory details of lower-level middleware system

Thilo Kielmann, VU University Amsterdam

The Simple API for Grid Applications
(SAGA): Towards a Standard

• The need for a standard programming interface
– Projects keep reinventing the wheel again, yet again, and again
– MPI as a useful analogy of community standard
– OGF as the natural choice; established the SAGA-RG

• Community process
– Design and requirements derived from 23 use cases

– SAGA Design Team (OGF, Berkeley, VU, LSU, NEC)

Thilo Kielmann, VU University Amsterdam

Ibis: Grid Programming and
Deployment Simplified

Satin: Divide-and-Conquer for the Grid

– Effective paradigm for Grid applications (hierarchical)
– Satin: Grid-aware load balancing (work stealing)
– Also support for

• Fault tolerance
• Malleability
• Migration

More: Master-Worker Parallelism

“Embarrassingly parallel” problems
minimal communication
no dependence on numbers/types of computers

Popular e.g. by Seti-at-home, BOINC, etc.
only(?) applicable to very simple problems

More: Parallel Skeletons / Higher-Order
Components

Abstract parallelism and communication from the
application logic

Highly useful approach to implement adaptive
(autonomic) applications

 (If this all reminds you of what you were doing while
you were still young, you are getting my point...)

Challenges of Near-future Platforms

Scalability
– applications have to run on widely different

numbers of CPU's
– if your program can not use twice the number of

CPU's, you won't be able to utilize next year's
computer

Heterogeneity
– applications will have to run on many core and

multi core, and special-purpose CPU's (like Cell
and GPU's)

– think of clusters of multi core, clusters of Cell's,
clusters of clusters of...

Challenges (2)

Performance portability
– applications must run efficiently on different types

of machines (one of the hard problems of parallel
computing)

– I mean, both on Tsubame with GPGPU's and on
Roadrunner with Cell's...

Malleability
– applications must be able to run with changing

numbers of processors, at run time
• adapt to changing environments

Fault tolerance
– simple statistics: with a large number of parts

involved, failure probability raises towards 1

Programming for the Mist of Architectures

Lots of heroic efforts squeezing out performance:
– CUDA
– Cell
– Astron writing Assembler for the Blue Gene/L ...

We are back to the (Transputer) times where codes
were written for specific parallel machines
– Not what we want (except for researching

machines)
The opposite on clouds and grids: (lazy guys)

– Map/Reduce and Hadoop abstract from machine
– but add fault tolerance and malleability

Approach seen by CoreGRID folks

Application + runtime env.

Middleware

Resources

Grid Application Runtime Stack

Grid Application Toolkit (GAT)

SAGA
MPICH-G
Workflow

Satin/Ibis
NetSolve
...

“just want to run fast”
“want to handle remote

data/machines”

Added value for applications

SAGA

Approach seen by Berkeley's PAR Lab

[D. Patterson, USENIX 2008 keynote]

Programming Models for the Mist

We need a lower layer of efficiency primitives that
handle certain platforms the respectively “best” way
– this is for the CCI's and CCR's
– users should not see this, only tool writers or

compilers
A higher “coordination” layer has to describe

available concurrency, in a declarative manner (?)
This means, we should reconsider the works from

the 80s and 90s and see why they failed and what we
could use today
– map-reduce as the perfect example for an old idea,

re-animated
– There is hope for your Ph.D. work, after all ;-)

Summary / Conclusions

The future is parallel
Parallel programming is hard
This is a big chance for Computer Science to get it

right, finally...
My personal take:

– The solution will be a combination of declarative
parallelism, combined with MUCH systems work
on getting the plumbing right

– We might have to step back from getting the last
bit of performance in favour of a more
sustainable approach

