Computing in the Mist:
Writing Applications for Unknown Machines

Thilo Kielmann
VU University, Amsterdam

kielmann@cs.vu.nl

3

VU university amsterdam

INCO B MERTE R 2

- How many cores does your computer have?
> Where is your data?
> What has happened to job number 23427

THE MEST

B MR E T 200

ITRS Roadmap 2005 and 2007 k’

VU university amsterdam }Q’b

x

)

25

= 2005 Roadmap

= 20

fl_;c; 15 1
X 2007 Roadmap
§ Intel single core N\ ?
O

. “Intel multicore

2001 2003 2005 2007 2009 2011 2013
[D. Patterson, USENIX 2008 keynote]

A Fundamental Technology Change V

VU university amsterdam }Q’b
J CPU's will get faster only marginally:

— limits of integration density
— energy consumption (proportional to clock rate)

JIf you want a faster computer, you need to use
multiple CPU's:

— In the past, the clock rate has doubled every 18
months

— In the future, the number of cores will double
every 18-24 months

J All programs must be parallel to use this new
hardware!

VU university amsterdam

Q

Q.
>
e

@)

]

@)

.

ol

2
L
&

Q.
@)
e

©

- -

D

T

Q

-

@)
Q
QO
o0

L'

O

]

=

Intel's Tera Scale Vision V
m’

Parallel Programming
f Tools & Techniques TK
Model-Based Applications

A S

| D# Thread-Aware #
ﬁ Execution Environment ﬂﬂ'

Scalable Hull,i-cnrew\
Architectures h&
: — FIEmory
) b Ta. Sharing
High Band- r w oW 'w 'y Yy & Stacking
width 1D & f | | -

Communications

IBM's Cell: Heterogeneous Ensemble V

VU university amsterdam Jﬁb

PU PU
| sxu_[|(|f|_sxu_|
T T
* 13
LS LS

------7‘-l-

SXU |
s

—
= Jlgl?
——
A
—
7 g
—
7l
——
;HEE

Source: M. Gechwind et al., Hot Chips-17, August 2005

Billion Ops / sec

Cell Performance Compared

VU university amsterdam }ﬁb
B FP (SP) @ FP (DP) Hl Int (16 bit) O Int (32 bit)

Freescale AMD Intel PowerPC® Cell Broadband
MPC8641D Athlon™ 64 X2 Pentium D® 970MP Engine™
1.5 GHz 2.4 GHz 3.2 GHz 2.5 GHz 3.2 GHz

[Dr. Michael Perrone, IBM]

Cell Programming: Master/Worker #

VU university amsterdam }Q’b

J PPE executes main program
J SPE's execute sub tasks and return results

J all communication between PPE and SPE's must be
programmed explicitly

Task Data
~ j By
Y N
SPE SPE SPE SPE
Task || Data | Task || Data | Task || Data | Task || Data
SPE SPE SPE SPE
Task }{ peta JTeskHoaa | [meskHoata]| [eskH peto

[Cell Programming Primer, 2006 Sony]

Graphics Processing Units (GPU's)

VU university amsterdam }Q’b
J Example: Nvidia's GeForce8800

— 8 x 16 blocks of stream processors
— separate thread schedulers
— crossbar-like access to graphics memory

Input Assembler Setup | Rstr/ ZCull

Vix Thread Issue Gaom Thread |ssue Pixel Thread lssue

[| |
[[
I | 3
[0 [

I |
OOCE

OOl
0 o |
[[|51
o |

g
§
g
a
T
1]
g
=
h

GPU vs. CPU .
VU university amsterdam }ﬁb

J Nvidia GeForce 8800 Intel Pentium 4
— clock speed 1.35 GHz — clock speed 2.4 GHz
— 681 million transistors — 55 million transistors

[Schellmann et.al.,
Euro-PAR 2008]:

2 Nvidia GeForce
8800GTX as fast
as 16 Intel Xeon
3.2GHz

General Purpose GPU Programming

VU university amsterdam .ﬁ)

Nvidia's CUDA

Computing y — ax + y with a Serial Loop
void saxpy_serial{int n, float alpha, float *x, float *y)
{
for{int i =0; i<m; ++i)
y[i] = alpha®x[i] + y[i];

/1 Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, X, ¥);

Computing y — ax + y in parallel using CUDA
__global__
void saxpy_parallel{int n, float alpha, float *x, float *v)
{

int i = blockldx. x*blockDim.x + threadldx.x;

if(i<n) y[i] = alpha®x[i] + y[il;

L Invoke parallel SAXPY kernel (256 threads per block)
int nblocks = (n + 255) / 256;
saxpy_parallel=<<nblocks, 256==»=(n, 2.0, x, ¥}

Clusters: Beyond Single Computers .
DAS3’ VU Amsterdam: VU university amsterdam }ﬁb

ﬁdu#"

Programming for Clusters V

VU university amsterdam }Q’b
J Distributed memory, high-speed networks

J commonly: message passing (MPI), C and Fortran
J academic: Java remote method invocation (lbis)

J deployment via shared file system and batch queue
scheduling

Clouds: Data Centers + Virtualization

VU university amsterdam !ﬁb
(OK, a bit too simplified...)

User User
Apps Apps

Mgt | |Device
Code Driver Linux Windows

Virtual
Mgt API Hardware API

Intel VT
Hardware

AMD Pacifica

Cloud Computing: Plaform as a Service (PaaS)

VU university amsterdam }Q’b
1 Amazon Web Services:

— Elastic Compute Cloud (EC2)

- allows to dynamically create/remove virtual machines
with user-defined image (OS + application)

* payment for CPU per hour
— Simple storage Service (S3)

* provides persistent object storage, write-once objects
* payment for storage volume and transfer volume

J Highly dynamic service provider for compute and
storage capacities

Programming Clouds: Hadoop

VU university amsterdam }Q’b
J implements the map-reduce paradigm

J allows processing of large data sets
J user defined map and reduce functions
J Hadoop distributed file system (HDFS) built on top

of Amazon S3
Compute Cluster
1 Got popular due
LFs Block 1 BF J
to fault-tolerant, |Data Map
f' I b d data data data da CIFS Bleck 1
- datachtadatadatadata | T @00 |l
I e ase dlata clata data dara data --"""r-‘,r Results
n . 11|
Im p I eme ntatl o n data data data data daia _r OF5 Bleck 2 s el s St
. e e B weh chirs i St
ﬁlwilﬂ[ﬂ:j'ﬂﬁuﬁlﬁjﬂ13 H.du:. h.- :r.'.:uﬂ.w:m
L clata data data data 9% Bl Map L—» diy chia A data
s ol v Saia
data data data data data — :E::jﬂ:zﬂ:
dita clata data data data %, LiFs Bleck 2 A thts dyen daty
il cata data data data ‘.\\' dwes dafa s daa
dlata clata data data data
ilala cata data data data Hﬂp
T P v e ‘L‘HEIUEH|
[F% Block &
—

Grid Computing

VU university amsterdam }QF

Grid Programming:

Globus GASS copies afile...

int copy_file (char const* source,
{

globus_url_t source_url;
globus_io_handle t dest _io_handle;
globus_ftp client operationattr_t source ftp_attr;
globus_result t result;
globus_gass_transfer requestattr_ t source gass_attr;
globus_gass_copy_attr_t source_gass_copy_attr;
globus_gass_copy_handle_t gass_copy_handle;
globus_gass_copy_handleattr_ t gass_copy_handleattr;
globus_ftp_client handleattr_t ftp _handleattr;

char const* target)

globus_io_attr_t io_attr;
int output file = -1;
if (globus_url parse (source URL, &source url) != GLOBUS_ SUCCESS) {

printf ("can not parse source URL \"$s\"\n", source URL);
return (-1);

if (source_url.scheme_type !'= GLOBUS_URL SCHEME GSIFTP &&
source url.scheme type != GLOBUS_URL_ SCHEME FTP &&
source url.scheme type != GLOBUS_URL SCHEME HTTP &&
source_url.scheme type != GLOBUS_URL_ SCHEME HTTPS) {
printf ("can not copy from %s - wrong prot\n", source URL);
return (-1);
}
globus_gass_copy handleattr init (&gass_copy handleattr) ;
globus_gass_copy_attr_init (&source_gass_copy_attr);

globus_ftp client handleattr_ init (&ftp_handleattr);
globus_io_fileattr_init (&io_attr);
globus_gass_copy_attr_set io (&source_gass_copy_attr, &io_attr);
&io_attr);
globus_gass_copy_ handleattr_set ftp_attr
(&gass_copy_handleattr,
&ftp handleattr);
(&gass_copy_handle,
&gass_copy_handleattr) ;

globus_gass_copy_handle_init

VU university amsterdam

if (source_url.scheme type == GLOBUS_URL_ SCHEME GSIFTP ||
source_url.scheme type == GLOBUS_URL SCHEME_FTP) {
globus_ftp client_operationattr_ init (&source ftp_ attr);
globus_gass_copy_attr_set ftp (&source_gass_copy_attr,
&source ftp_attr);

}

else {
globus_gass_transfer requestattr_init (&source gass attr,

source_url.scheme) ;
globus gass_copy_attr_set gass(&source_gass_copy_attr,
&source gass_attr);

output file = globus_libc open ((char*) target,
O_WRONLY | O _TRUNC | O_CREAT,
S_IRUSR | S_IWUSR | S_IRGRP |
S_IWGRP) ;
if (output_file == -1) {
printf ("could not open the file \"%s\"\n", target);
return (-1);
}
/* convert stdout to be a globus_io_handle */
if (globus_io_file posix convert (output file, O,
&dest_io_handle)
!= GLOBUS_SUCCESS) {
printf ("Error converting the file handle\n");
return (-1);

result = globus_gass_copy_register_url_ to_handle (
&gass_copy_handle, (char*)source URL,
&source_gass_copy_attr, &dest_io_handle,
my_callback, NULL) ;
if (result != GLOBUS_SUCCESS) {
printf ("error: %s\n", globus_object printable to_string
(globus_error_get (result)));
return (-1);
}
globus_url destroy (&source url);
return (0);

}

Thilo Kielmann, VU University Amsterdam 20

The Grid Application Toolkit (JavaGAT)

VU university amsterdam }Q’b

The Leading Source for Global News and Information Covering the
Ecosystem of High Productivity Computing / November 14, 2007

Home Page | Free Subscription |
Advertising | About HPCwire

Features:

JavaGAT -- A Kindler Gentler Grid Interface
by Rob van Nieuwpoort and Thilo Kielmann

Vrije Universiteit, Amsterdam

[SC'07] ACM TechNews
November 16, 2007

JavaGAT Example: Copy a File

High-level, uniform
g ’ VU university amsterdam }QF

import org.gridlab.gat.*;
import org.gridlab.gat.io.File;

public class Copy {
public static void main(String[] args)
throws Exception {

GATContext context = new GATContext() ;
URI source = new URI (args[0]);
URI dest = new URI(args[1l]);
// Create a GAT File object
File file = GAT.createFile(context, source);
file.copy(dest); // The actual file copy.
GAT.end(); // Shutdown the JavaGAT.

}

* Provides the high level abstraction, that application programmers
need; will work across different systems

* Shields gory details of lower-level middleware system

Thilo Kielmann, VU University Amsterdam 22

The Simple API for Grid Applications %
(SAGA): Towards a Standard '

VU university amsterdam }Q’b

* The need for a standard programming interface
— Projects keep reinventing the wheel again, yet again, and again
— MPI as a useful analogy of community standard
— OGF as the natural choice; established the SAGA-RG
* Community process
— Design and requirements derived from 23 use cases
— SAGA Design Team (OGF, Berkeley, VU, LSU, NEC)

OpenGridForum

OPEN FORUM | OPEN STANDARDS

Thilo Kielmann, VU University Amsterdam

SmartSockets

Ibis: Grid Programming and
Deployment Simplified

VU university amsterdam

Grid Applications

MEG Analysis, Multimedia Content Analysis, Satisfyability Solver,
Automatic Grammar Learning, N-Body Simulation, etc.

Programming
Models

Satin, MP), RMI, GMI

IPL

Communication, Membership,
Fault Telerance, etc,

Traditional

Robust
ommunication

Libraries

Traditional
Communication
Middleware

Deployment

and Management

IbisDeploy, Adaptive Satin,
Barnes GUI, etc.

JavaGAT

Job Submission, Monitoring,
File Transfer, etc.

Crid Zorilla

Middleware

Peer to Peer Gnd

Satin: Divide-and-Conquer for the Grid V

VU university amsterdam

Effective paradigm for Grid applications (hierarchical)
Satin: Grid-aware load balancing (work stealing)
Also support for
Fault tolerance
Malleability
Migration

Parallel Sudoku Solver with ADLB

12 9
3 61
7 8
513
Ji 911 812
5|6
1 9
6|7 1
2 S 3

Work-package =
partially completed "board”

& Argonne National r
Laboratory 10

Program:

If (rank = 0)
ADLB_Put initial board

ADLB_Get board
while success (else done)
ooh
find first blank square
If failure (problem solved!)
print solution
ADLB_Set_Done
else
for each valid value
set blank square to value
ADLB_Put new board
end while [

More: Master-Worker Parallelism V

VU university amsterdam }Q’b
J “Embarrassingly parallel” problems

- minimal communication
- no dependence on numbers/types of computers

J Popular e.g. by Seti-at-home, BOINC, etc.
J only(?) applicable to very simple problems

More: Parallel Skeletons / Higher-Order
Components '

VU university amsterdam }Q’b
1 Abstract parallelism and communication from the

application logic
J Highly useful approach to implement adaptive
(autonomic) applications

- (If this all reminds you of what you were doing while
you were still young, you are getting my point...)

Challenges of Near-future Platforms V

VU university amsterdam }Q’b

J Scalability

— applications have to run on widely different
numbers of CPU's

— if your program can not use twice the number of
CPU's, you won't be able to utilize next year's
computer

J Heterogeneity

— applications will have to run on many core and
multi core, and special-purpose CPU's (like Cell
and GPU's)

— think of clusters of multi core, clusters of Cell's,
clusters of clusters of...

Challenges (2) V
o

VU university amsterdam

J Performance portability

— applications must run efficiently on different types
of machines (one of the hard problems of parallel
computing)

— | mean, both on Tsubame with GPGPU's and on
Roadrunner with Cell's...
1 Malleability

— applications must be able to run with changing
numbers of processors, at run time
- adapt to changing environments

J Fault tolerance

— simple statistics: with a large number of parts
involved, failure probability raises towards 1

Programming for the Mist of Architectures V

VU university amsterdam }Q’b
J Lots of heroic efforts squeezing out performance:

— CUDA
— Cell
— Astron writing Assembler for the Blue Gene/L ...

1 We are back to the (Transputer) times where codes
were written for specific parallel machines

— Not what we want (except for researching
machines)

J The opposite on clouds and grids: (lazy guys)
— Map/Reduce and Hadoop abstract from machine
— but add fault tolerance and malleability

Approach seen by CoreGRID folks

VU university amsterdam }QF

grid-unaware application grid-aware Application + runtime env.

application

grid—enabled programming environments simplified API

application support tools

service and resource abstraction layer

Execution Information H
Meoution & . Data D S sinis Middleware
Services Services

Resources

fwe%,

Grid Application Runtime Stack

VU university amsterdam

“‘just want to run fast”

MPICH-G |

Workflow

Satin/lbis
NetSolve

e

“‘want to handle remote
data/machines”

<

grid—unaware application

grid—aware
application

grid—enabled programming environments

application support tools

simplified API

™~

N

service and resource abstraction layer

A

Grid Application Toolkit (GAT)

SAGA

Added value for applications

Approach seen by Berkeley's PAR Lab

Design Patterns/Motifs

Composition & Coordination Language (C&CL) Static
Verification

C&CL Compiler/Interpreter

Parallel Parallel Type
Libraries Frameworks Systems

Efficiency i Directed
Languages SHElEN NG Testing

Autotuners

Legacy Schedulers Communication & | Dynamic
Code Synch. Primitives | Checking
Efficiency Lan uae Com iIers

OS Libraries & Services

Correctness

Debugging
Legacy OS with Replay

Multicore/GPGPU RAMP Manycore

[D. Patterson, USENIX 2008 keynote]

Programming Models for the Mist V
o

VU university amsterdam

J We need a lower layer of efficiency primitives that
handle certain platforms the respectively “best” way

— this is for the CCl's and CCR's

— users should not see this, only tool writers or
compilers

J A higher “coordination” layer has to describe
available concurrency, in a declarative manner (?)

J This means, we should reconsider the works from
the 80s and 90s and see why they failed and what we
could use today

— map-reduce as the perfect example for an old idea,
re-animated

— There is hope foryour Ph.D. work, after all ;-)

Summary / Conclusions V

D The future iS paraIIeI VU university amsterdam }ﬁb
J Parallel programming is hard

J This is a big chance for Computer Science to get it
right, finally...
J My personal take:
— The solution will be a combination of declarative

parallelism, combined with MUCH systems work
on getting the plumbing right
— We might have to step back from getting the last

bit of performance in favour of a more
sustainable approach

Think different.

