- e e s cocsss sl iRk

The Next MPI
challenge(s)

George Bosilica

® Difficult to define a success metric
® Failure metric
® How many MW were lost due to MPI?
® Success metric

® How many people get a job based on MPI
skills?

® How much breakthrough science came to light
due to MPI?

il e =" s el

Thread based MPI

MPI Is process based, threads are external entities
outside of MPI knowledge

Point-to-point communications between threads
are possible by crafting special tags

Collectives are process based, one process
participate in the collective once

Threads fight for messages instead of
collaborating

Different approach than TMPI and AMPI

L et TN]

® What if:

® MPI became threads based, i.e. each threac
get a rank

® Each thread is allowed to behave as a MPI
process today

® We can use a thread based programming
approach, mixed with message
synchronization and collective communication

® Stay as close as possible to the current MPI
standard

What If:

MPI| became threads based, I.e. each thread ge!
a rank

Ea ® Stay as close as possible to the ll
current MPI standard (Nx1 is a

I'c .

P standard MPI application)

W4 e MPI cOMM WORLD is still the |

ap ration
same

an

St P

standard

® mpiexec -np NxM ...

® will start N processes and notify them that
each will have at most M threads

® Extend the standard with MPI COMM LOCAL
including all M local threads

® Each thread is required to call
MPI _Init_thread to set Iits rank In the
MPI COMM LOCAL

® MPI_ COMM_ LOCAL is a fully featured intra-
communicator

® process based communicator vs. thread
based communicator

® |t can be used by any communicator creation
function

® |f any doubts about the rank of the thread in a
communicator creation, the order will be basel
on the rank in the local communicator.

L et TN]

® On the process based communicator st
as MPI COMM_ WORLD all threads ca
match a receive

® On all mixed communicators the receive
are named by rank (thread)

® Similar rules applies for collective
communications, I.e. a process can
participate multiple times in a collective.

PLASMA

’LASMA: Tile Algorithms

3lock algorithms — LAPACK Tile algorithms — PLASMA

HH 5 HE

PLASMA: DAG Schedulin

Cholesky
6X6

Tiles for QR Factorization

e e e s e -

acyclic representation of the
algorithm as a directed grapr
with procedures attached to
the nodes

nodes are annotated with the
list of iInput and output
parameters

special node for conditionals,
loops and collective

® DAG construction and
exploration

® initial approach: static
partitioning and dynamic
scheduling in each sub-
domain

® “sliding window” approach

® Dynamic scheduling: trade
between data reuse and
aggressive pursuit of the critica

.fd._nﬁ'l'h L e L

Some dependenc
will point to local

variables, while ot
point to external d

® Communications :
implicit, and the
scheduler can ext
them from the DA

Potential for
overlapping
communications &

L Comgutations

ky — quad—anc:kat dual—-core Opternn

ASMA & ACML nLﬁE
ML IE?hl:nlesr'r:_w.nr

Sh—

Gilopds

70

50

10

OR — quad-socket, dual—c:ure O

S F’LASMA & A{}ML ELAS
- ACML QR

MKL QR
—— | APACK & ACML BLAS

e S e

4000 4000 6000 6000 7000 8020 8000 10000 1%00 2000 3000 4000 6000 B000 7000 B80OC

problem size

problem size

S ———————_———__—_L S e

2 ST B e T Y

G Scheduling: Cholesky

BB: nested parallelism

SMPSs:

arbitrary DAG,
dynamic scheduling,
data renaming

Resource constraints

Automatic Resource Management
Asynchronous Task Executions
Implicit communications
Collective Communications
Dynamic multi-level scheduling

Fault Tolerance

CCI

—-—eem e e e e =

Tasks: send, receive, op

Horizontal arrow: concurrent
execution

Vertical arrow: sequential
execution

Dash line: multi
dependencies

b LR T S e

®\Created-at-the user level

® Executed by the lowest
level

® Small overhead
é ® No interruptions

=X times ® Asynchronous
® Report on completion

R

FT-MP|

® A lack of fault tolerant programming
paradigms

® MPI is the de-facto programming model
for parallel applications

® MPI Standard: “advice to implementors: A good quality

Implementation will, to the greatest possible extent, circumvent
the impact of an error, so that normal processing can continue
after an error handler was invoked.”

T ; a2 R e e T

Define the behavior of MPI [state] in case an error
occurs

Give the application the possibility to recover from a
node-failure

A regular, non fault-tolerant MPI program will run
using FT-MPI

Follows the MPI-1 and MPI-2 specification as closely
as possible (e.g. no additional function calls)

On error user program must do something (!)

ey e e e e T R

® ABORT, BLANK, SHRINK and REBUILD

® REBUILD: a new process is created, and it wil
return mpi_INIT_RESTARTED_PROC from MPI Init

® BLANK: dead processes replaced by
MPI_PROC NuLL, all communications with such a
process succeed, they do not participate In the
collectives

® two sub-modes: local and global

L et TN]

. epoch k ® RESET the epOCh

should match in add
Recovery :
e K g0 Gt TN to the MPI matching
4

epoch k+1 requirements

® CONTINUE: only MF
matching

250

1501

[MPICH 1.2.5

EMPICH 2
0.84b1

- HLAM 7.0

O FT-MPI

32 nodes with Gigabit

PSTSWM

t42.118.240 t85.118.24 t170.13.12

® How to checkpaint?

® either floating-point arithmetic or binary arithmetic will
work

® If checkpoints are performed in floating-point arithmetic
then we can exploit the linearity of the mathematical
relations on the object to maintain the checksums

® How to support multiple failures ?
® Reed-Salomon algorithm

® support p failures require p additional
processors (resources)

B R e e e e e T e e e T

® Fault Tolerant CG
® 64x2 AMD 64 connected using GigE

Size of the Problem | Num. of Comp. Procs
Prob #1 164,610 15
Prob #2 329,220 30
Prob #3 658,440 60
Prob #4 1,316,880 120

Performance of PCG Wlth different MPI librar

erformance on AMD I

Iot eran (luster

Foe!
=
m OO @ O

o

|

For cl
generate
every
itera

;1. 00%
I_I :::::

Time

Prob #1

Prob #2

Prob #3

Prob #4

1 ckpt

2.6

3.8

] |

5

7.8

2 ckpt

5.8

8.5

10.6

3 ckpt

6.0

7.9

10.2

12.8

4 ckpt

7.9

9.9

12.6

15.0

5 ckpt

9.8

11.9

14.1

16.8

t

L0 Chaclpoint (verhead

!

-y
L o]

1. &%

= L 2K
1 O
50,80
. &%
> (L 408
0. 2
. OO

Checkpoint
overhead In
seconds

AFTB concept In
example

Perform in paral
Z=X+Yy

K. Huang, J. Abraham, "Algorithm-Based Fault Tole

S Mty Onaratione " IEEE Trane on Comn (Rneace |

X2 X3 Xz Xe
HEEEEE RS
i B e

Compute In para
the checksum c
X andy

SUm

Y Y Y W W

Compute In para
the sum of
X andy

Simultaneously
can compute the
of the checkpo

® Relies on floating-point arithmetic
® Exploit the checksum processor
[
® AXPY, SCAL (BLAS1)
® GEMV (BLAS2)
® GEMM (BLAS3)
® LU, OR, Cholesky (LAPACK)

® FFT

Stable algorithms exist for any linear operation:

ABFT-PDGEMM

A B C
X
% R Data invalved in the
S— Unusad ciarrent I:-IZI-IT||:IIJ1E|IH:II'I
..... 2 pheekeum slap

[A AGe [B BCGy
Ar = (cTA CTACg) and - Br = (cLB CIBCy)

A AB ABCyp
(crA) (B BCr)= (CIAB CIABCy) = AB)r

S — e ———————————————————— E— — .

ABFT-PDGEMM

The overhead
- 2p-1 extra processes for p2

- one extra process need to receive the
data for the rows and columns

Conclusion: a very scalable approach,
more processors means less overhead

One fault
MNorma
computation

, B Restart dead proc
— cl:l:l?':-llllal_"l'. state
W sensackaaa @ ET-MPI will take care

fault management

+_
| cvernend| ® Once the new proces:
" | ™ the MPI_ COMM_ WO
| we have to rebuild the
communicators

® Then we have to retrie
the data from the
checkpoint processor

jacquard.nersc.gov

Processor type Opteron 2.2 GHz
Processor theoretical peak 4.4 GFlops/sec
Number of application processors 712

System theoretical peak (computational nodes) 3.13 TFlops/sec
Number of shared-memory application nodes 356

Processors her node 2

Physical memory per node 6 GBytes

Usable memory per node 3-5 GBytes

Craritdmby lntavrrammarnt lnfF Ail-amea
W RSl 0 NN FRte I S D NN b IO 0T 00 DDA |

Switch MPI Unidrectional Latency 4.5 psec
Switch MPI Unidirectional Bandwidth (peak) 620 MB/s

ool sl s o disls ARACE | o=l P H - "3
iIOal Snaied GisK urra UBHH‘IE l-llﬂl\. ﬂFﬂhE L

Batch system PBS Pro

T s s om
I DYLES

PBLAS vs. ABFT BLAS (0
fallure)

FEBLAS PDIGEMBMM ABFTEBLAS PDGEMM
4.4 | | | I 4.4 | T | |
Z Z Z 4000 Z Z Z Z
: : : 3000 : : : :
4_ E.--..--..E ,. Emu_ 4_ , ;---------E

GFLOPS | sec | proc
" .
|

1_5_ d e mm - i. A -
'I_ ... 1_ ...
08~ . -- - E.--..--..:--.-...-E..---.--.: O&s----.- E.--..--.E.-...-.-.E
u 1 1 1 I u 1 | 1 1
54 a1 100 121 256 484 G4 81 100 121 258 484
procs # procs

Weak scalability

koG = 3000

! ! : 150

1
: ; PELAS PDGEMM
: : ——— ABFTBLAS PDGEMM (0 lailure)
: : ——— ABFTELAS PDGEMM (1 failure) 145

E o E s m o R mom AN R mmE EEES s EEE R SRR R mEE EEEE N EmES EEmE S mOEE R EmEE EmEE EmEs s EmEE s mEE EmEE kR mom n -

E

]

]

n
1

3

E

=t

—

in
I

I
%% tima ovarmad companad to FELAS PDGERM
ra
n
I

b
=i
=
]
1
1
1
1
1
-
1
1
1
-
1
1
[
[
1
1
1
1
S
1
1

E
|
1
1
1
1
1
-
1
1
1
-
1
1
-
1
1
1
1
=L
1
1

1 1 1 !
100 025 400 25 1024 0 P P e -

Strong Scalabillity

— N=B0000 PELAS 150
: : , —| = = = NeB0000 ABFT
; ; 5 5 N=40000 PELAS

T R N=40000 ABFT L

e N=30000 PELAS

- = = R=30000 ABFT

| — = 20000 PELAS

= = = N=20000 ABFT
) . ; — 1= 10000 PELAS
..-.-r\—._-_.-._:-.--.; -..-...i.-..-..-..-.--._ - = = {10000 ABFT

- - —_——
_—
-

140

135

130

125

120

115

110

%% tima ovarhead comparad o FELAS PDGEM

100
100 205 ADD a25 1024 26 100 225 400 B25

® Data-flow programming models an
Interesting alternative

® Fault tolerance is a requirement

® FT-MPI approach a viable possibility
with algorithms already available

® The future of MPI is decided now !

4 4
35 ———p— 35
§ 3 v —~ § 3 . a
= <
§ 2.5 EZ.S S— . :
& 2 ~+4000 & 2
2 1 -+-3000 2 .
u ot u il
—=—2000
1 1
—=1000
0.5 0.5
u I I u I I
64 81 100 121 256 454 64 81 100 121 256 454
of processors # of processors

® MVAPICH over Infiniband

® FT-MPI over socket on

initbhand

I -

-
I —

. ESSSSSSSESS—S—S—
(PDGEMM-SUMMA | ABFT-PDGEMM-SUMMA

] 2
2y 4 2n+2p - (=) 2ol woe)
P VP

742+ 2p -3 P

® The algorithm maintain the consistency
of the checkpoints of the matrix C
naturally

it i R D e e o el e Dl

