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The Next MPI
challenge(s)

George Bosilica




® Difficult to define a success metric
® Failure metric
® How many MW were lost due to MPI?
® Success metric

® How many people get a job based on MPI
skills?

® How much breakthrough science came to light
due to MPI?
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Thread based MPI




MPI Is process based, threads are external entities
outside of MPI knowledge

Point-to-point communications between threads
are possible by crafting special tags

Collectives are process based, one process
participate in the collective once

Threads fight for messages instead of
collaborating

Different approach than TMPI and AMPI
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® What if:

® MPI became threads based, i.e. each threac
get a rank

® Each thread is allowed to behave as a MPI
process today

® We can use a thread based programming
approach, mixed with message
synchronization and collective communication

® Stay as close as possible to the current MPI
standard
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® mpiexec -np NxM ...

® will start N processes and notify them that
each will have at most M threads

® Extend the standard with MPI COMM LOCAL
including all M local threads

® Each thread is required to call
MPI _Init_thread to set Iits rank In the
MPI COMM LOCAL



® MPI_ COMM_ LOCAL is a fully featured intra-
communicator

® process based communicator vs. thread
based communicator

® |t can be used by any communicator creation
function

® |f any doubts about the rank of the thread in a
communicator creation, the order will be basel
on the rank in the local communicator.
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® On the process based communicator st
as MPI COMM_ WORLD all threads ca
match a receive

® On all mixed communicators the receive
are named by rank (thread)

® Similar rules applies for collective
communications, I.e. a process can
participate multiple times in a collective.




PLASMA




’LASMA: Tile Algorithms

3lock algorithms — LAPACK Tile algorithms — PLASMA
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PLASMA: DAG Schedulin

Cholesky
6X6



Tiles for QR Factorization
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acyclic representation of the
algorithm as a directed grapr
with procedures attached to
the nodes

nodes are annotated with the
list of iInput and output
parameters

special node for conditionals,
loops and collective



® DAG construction and
exploration

® initial approach: static
partitioning and dynamic
scheduling in each sub-
domain

® “sliding window” approach

® Dynamic scheduling: trade
between data reuse and
aggressive pursuit of the critica
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Some dependenc
will point to local

variables, while ot
point to external d

® Communications :
implicit, and the
scheduler can ext
them from the DA

Potential for
overlapping
communications &
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G Scheduling: Cholesky

BB: nested parallelism

SMPSs:

arbitrary DAG,
dynamic scheduling,
data renaming




Resource constraints

Automatic Resource Management
Asynchronous Task Executions
Implicit communications
Collective Communications
Dynamic multi-level scheduling

Fault Tolerance



CCI
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Tasks: send, receive, op

Horizontal arrow: concurrent
execution

Vertical arrow: sequential
execution

Dash line: multi
dependencies
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®\Created-at-the user level

® Executed by the lowest
level

® Small overhead
é ® No interruptions

=X times ® Asynchronous
® Report on completion
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FT-MP|




® A lack of fault tolerant programming
paradigms

® MPI is the de-facto programming model
for parallel applications

® MPI Standard: “advice to implementors: A good quality

Implementation will, to the greatest possible extent, circumvent
the impact of an error, so that normal processing can continue
after an error handler was invoked.”
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Define the behavior of MPI [state] in case an error
occurs

Give the application the possibility to recover from a
node-failure

A regular, non fault-tolerant MPI program will run
using FT-MPI

Follows the MPI-1 and MPI-2 specification as closely
as possible (e.g. no additional function calls)

On error user program must do something (!)
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® ABORT, BLANK, SHRINK and REBUILD

® REBUILD: a new process is created, and it wil
return mpi_INIT_RESTARTED_PROC from MPI Init

® BLANK: dead processes replaced by
MPI_PROC NuLL, all communications with such a
process succeed, they do not participate In the
collectives

® two sub-modes: local and global
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. epoch k ® RESET the epOCh

should match in add
Recovery :
e K g0 Gt TN to the MPI matching
4

epoch k+1 requirements

® CONTINUE: only MF
matching
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® How to checkpaint?

® either floating-point arithmetic or binary arithmetic will
work

® If checkpoints are performed in floating-point arithmetic
then we can exploit the linearity of the mathematical
relations on the object to maintain the checksums

® How to support multiple failures ?
® Reed-Salomon algorithm

® support p failures require p additional
processors (resources)
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® Fault Tolerant CG
® 64x2 AMD 64 connected using GigE

Size of the Problem | Num. of Comp. Procs
Prob #1 164,610 15
Prob #2 329,220 30
Prob #3 658,440 60
Prob #4 1,316,880 120

Performance of PCG Wlth different MPI librar

erformance on AMD I
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AFTB concept In
example

Perform in paral
Z=X+Yy

K. Huang, J. Abraham, "Algorithm-Based Fault Tole

S Mty Onaratione " IEEE Trane on Comn (Rneace |
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Compute In para
the checksum c
X andy
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Compute In para
the sum of
X andy

Simultaneously
can compute the
of the checkpo




® Relies on floating-point arithmetic
® Exploit the checksum processor
[
® AXPY, SCAL (BLAS1)
® GEMV (BLAS2)
® GEMM (BLAS3)
® LU, OR, Cholesky (LAPACK)

® FFT

Stable algorithms exist for any linear operation:



ABFT-PDGEMM
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ABFT-PDGEMM

The overhead
- 2p-1 extra processes for p2

- one extra process need to receive the
data for the rows and columns

Conclusion: a very scalable approach,
more processors means less overhead



One fault
MNorma
computation

, B Restart dead proc
— cl:l:l?':-llllal_"l'. state
W sensackaaa @ ET-MPI will take care

fault management

+_
| cvernend| ® Once the new proces:
" | ™ the MPI_ COMM_ WO
| we have to rebuild the
communicators

® Then we have to retrie
the data from the
checkpoint processor




jacquard.nersc.gov

Processor type Opteron 2.2 GHz
Processor theoretical peak 4.4 GFlops/sec
Number of application processors 712

System theoretical peak (computational nodes) 3.13 TFlops/sec
Number of shared-memory application nodes 356

Processors her node 2

Physical memory per node 6 GBytes

Usable memory per node 3-5 GBytes
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Switch MPI Unidrectional Latency 4.5 psec
Switch MPI Unidirectional Bandwidth (peak) 620 MB/s
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PBLAS vs. ABFT BLAS (0
fallure)
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Weak scalability
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Strong Scalabillity
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® Data-flow programming models an
Interesting alternative

® Fault tolerance is a requirement

® FT-MPI approach a viable possibility
with algorithms already available

® The future of MPI is decided now !
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® MVAPICH over Infiniband

® FT-MPI over socket on

initbhand
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® The algorithm maintain the consistency
of the checkpoints of the matrix C
naturally
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