
Alternative Aspects of Cloud
and Utility Computing

Vaidy Sunderam
Emory University, Atlanta, USA

vss@emory.edu

Credits and Acknowledgements

Distributed Computing Laboratory, Emory University
Magda Slawinska, Jarek Slawinski, Vaidy Sunderam

Collaborators
Oak Ridge Labs (A. Geist, C. Engelmann)
Univ. Tennessee (J. Dongarra, G. Bosilica)

Sponsors
U. S. Department of Energy
National Science Foundation
Emory University

Overview

Metacomputing research
Software systems for heterogeneous concurrent computing

PVM, IceT, H2O, Harness …
Focus on resource and communications management

Customize (condition) resource according to application needs
Support multiple (selectable) communication frameworks
Base programming model, but enable deploying others

Current project: Unibus
Lightweight, self-organizing framework for metacomputing
Relationship to Grid/Cloud/Utility computing

Resource sharing and aggregation to create a coherent
concurrent computing environment

Unibus Goals

Key requirements/functionality
Aggregation and sharing of diverse resources

Make compatible or unify to the extent possible/required

Customizing resources as needed
Deploy most suitable (concurrent) computing environment

Additional self-organizing properties
Adaptivity and resilience via dynamic resource management
Reduced/localized global state

Provider-provider, provider-client

Central idea
Client side overlay and virtualization for aggregation and
unification

Resource Sharing Abstraction

Providers own resources
Independently make them
available over the network
Clients discover, locate, and
utilize resources
Resource sharing occurs between
single provider and single client

Relationships may be
tailored as appropriate
Including identity formats, resource
allocation, compensation agreements

Clients can themselves be providers
Cascading pairwise relationships may
be formed Network

Providers

Clients

Unibus Approach

Coherence and Unification
Device driver model: device = remote resource
Driver + handle (e.g. vnode) = access daemon + mediator
Interfaces suited to device (resource) class

Adaptivity and Dynamism
Plug-and-play (event) model
Dynamic environment preconditioning

Similar to loading drivers / mounting filesystem

Reducing global state
Client-side overlay, virtualizing resources via proxies
Similar devices grouped together at interface side

No coordination necessary at remote end

Unibus Model

A Basic Implementation: ZF-MPI

1 zf-mpi> add ft_mpi user1-sun@{lab6a,lab6b,lab6c,lab6d,compute}
2 zf-mpi> add ft_mpi user2-linux@{wembley,gobo,emily,sprocket}
3 zf-mpi> ft_mpi setNS compute //nameserver host
4 zf-mpi> ft_mpi add ALL
5 zf-mpi> ft_mpi console conf
6 zf-mpi> sync ~/NPB3.2.1/NPB3.2-MPI ~/zf-mpi/
7 zf-mpi> cd ~/zf-mpi/NPB3.2-MPI
8 zf-mpi> make bt NPROCS=8 CLASS=B
9 zf-mpi> mv bin/bt.B.8 $HARNESS_BIN_DIR/$HARNESS_ARCH/
10 zf-mpi> ft_mpi ftmpirun compute -np 8 -o bt.B.8 > log
11 zf-mpi> cat log | grep "Time in seconds"
12 zf-mpi> ft_mpi console haltall

ZF-MPI Console
Virtual machine assembly
Data synchronization
Compile and build (// execution of remote shell commands)
Application launch

Dynamic Conditioning

Generalizing Automated Deployment

Provider side

Client side

Unification and Aggregation

Summary

Client-side virtualization and aggregation
Complete freedom and flexibility for providers
Dynamic conditioning & unification -> effective shared
access to remote heterogeneous multidomain resources

