Application Accelerators:
Dues ex machina?

CCGSC, Flat Rock, North Carolina

Jeffrey S. Vetter

Oak Ridge National Laboratory
and
Georgia Institute of Technology

OAK .
RIDGE Gegrola | Sollege el

National Laboratory = Computational Science and Engineering

Highlights

= Background and motivation
— Current trends in architectures favor two strategies
« Homogenous multicore
» Application accelerators
= Correct architecture for an application can provide
astounding results

= Challenges to adopting application accelerators
— Performance prediction
— Productive software systems

= Solutions from Siskiyou

— Modeling assertions
— Multi-paradigm procedure call

The Drama

= Years of prosperity

Increasing large-scale parallelism
Increasing number of transistors

Increasing clock speed

Stable programming models and languages

= Notable constraints force a new utility function for
architectures

Signaling

Power

Heat / thermal envelope

Packaging

Memory, /O, interconnect latency and bandwidth
Instruction level parallelism

Market trends favor ‘good enough’ computing — Economist

Current Approaches to
Continue Improving Performance

= Chip Multiprocessors
— Homogenous multicore
— Intel
— AMD
— IBM

= Application accelerators to augment general
purpose multi-cores

MFlop/s

Results from Initial Multicores
Provide Performance Boost

40000 , . . . ; ; 120
Woodcrest 3.0 GHz (athr) +—s— ! ! Steps, Opteron 2.2 GHz —+—
Woodcrest 3.0 GHz (2thr) ~—s— Steps, Woodcrest 3.0 GHz —#—
Woodcrest 3.0 GHz (1thr) s—w— P O P Baroclinic, Opteron 2.2 GHz —#—
35000 Opteron 2.2 GHz (4thr) »—— D E M M . Baroclinic, Woodcrest 3.0 GHz —&—
Opteron 2.2 GHz (2thr) »—e— Barotropic, Opteron 2.2 GHz =——e—
Opteron 2.2 GHz (1thr) +=—e— 100 | Barotropic, Woodcrest 3.0 GHz —e—
30000 |-
—_— 80 - ——
25000 | 8
& - --
0 \
£
20000 |- E 60
2
15000 g
w 40 -
10000 |
20 +
5000
0 k =
o 200 400 600 800 1000 1200 1400 1600 1800 2000 o P

Matrix Order MPI Tasks

Qua€d Kilo-core chips are on the way!

= 4 core chips coming

= 8 core chips likely
= ??

RAPPORT

= Rapport

— Rapport currently offers a
256 core chip

— Planning 1024 core chip in
2007 — Kilocore™

— Targeted at mobile and
other consumer
applications

Enter Application Accelerators

= Optional hardware installed to accelerate applications
beyond the performance of the general purpose
processor

Intel Woodcrest NVIDIA Quadro NVIDIA GeForce IBM Cell ClearSpeed
Dual Core FX 4500 GPU 6600 GPU Processor Avalon
clock frequency | 3.0 GHz 470 MHz 350 MHz 3.2GHz 250 MHz
type | CPU accelerator card accelerator card CPU accelerator card
power usage | 80 W 110 W 30w 100 W 20w
speed single / | ~48 GFLOPS/ 180 GFLOPS / 20 GFLOPS / 256 GFLOPS / 50 GFLOPS /
double | ~24 GFLOPS NA NA 25 GFLOPS 50 GFLOPS
precision
typical size | CPU socket PCle / MXM' card | PCle / MXM' card CPU socket PCI-X card
cooling | heatsink + fan heatsink + fan HS-only or HS+fan heatsink + fan HS-only

For Example ... Graphics Cards

o pas EFCONMA csariaes 3T Dirm ol
1= rce onou U seres Ji Flpeline

t e |

Vertex Shader Units ﬂ:j“—_] - =
L

=l

T N N .
1

=
=
_|.

*
Triangle Setup
*

Shadar Instruction Dispatch
l

Meamory
i,.ﬂlllon

For Example ... STI Cell

SPU SPU SPU SPU

MFC | MMU MFC | MMU MFC | MMU MFC | MMU

MMU \

I[e]
PPy i Interface
L2 EIB
\,
XDR DRAM Coherent

Interface

Y|y

/ Interface

AlA

MFC | MMU MFC | MMU MFC | MMU MFC | MMU

SPU SPU SPU SPU

For Example ... ClearSpeed

Syslen Natacek)

N PRco i | File

=
SRAM SAAM

PEio

Sysiein Netmin

=
|
=
=

10

For Example ... FPGAs

AMD Dpteron Cache
HyperTransport Memary

1400 MBIs 1400 MBIs
sustained sustained

payload payload

Microcode
ROM

Application

g GB/E Acceleration m
Aiels 4800 MBJs Cﬂcg:‘ﬂ
Cray RapidArray Xilimx (6 x 64b)

Interconnect Virtex |l Pro Six Banks
Dual-ported

On-Board h&emary

(24 MB)

4800 MBIs 4800 MBIs
(6 x 64b) (6 x 64b)
4800 MBJs

User Logic 1 192b User Logic 2
XC2V6000 XC2V6000

Ports MB/s
each

11

AMD Torrenza Ecosystem

b -
Acceleratio
solutions

Enterprise
SoA Java Technologies

XML SMP Identified
data center
opportunities
Content Storage 7

Network

Processing
e Established
$B market in
network platform
[jkely migration
to server
platform) Offload

Enablement

Horizontal technology
s Highly competitive to open markets
market in flux
+ Known growth opp.

AMD

June 1, 2006 2006 Technology Analyst Day

L —— Gaming
Physics
Accelerator

PCI-E
Bridge

I/O Hub

ﬁMD AMD
..)

8 GB/s

XML
Accelerator

AMD AMD

FLOPs
Accelerator

12

Architectures that Match Application Requirements can offer
Impressive/Astounding Performance Benefits
- GEO-regiStratiOn on GPU Video Imagery Geo-registration 2k x 2k Output

— 700x speedup over commodity
processor

= Numerous FPGA results on

o
=

BECPU P4 2.4GHz

B GPU GeForce 6600 with readback
B GPU QuadroFX 4500 with readback
B GPU GeForce 6600

B GPU QuadroFX 4500

Integer, logic, flop applications
— 40x on Smith-Waterman

Time (seconds)

o
o
=

— 10x speedup on MD
= HPCC RandomAccess on
Cray XlE eoo 512x512 1024x1024 2048x2048
. 7 GUPS On 512 MSPS | Input ImageSizc?(piers)
Arbitrary Kernel, 32-bit, 4-color 64x64 Image
— 32 GUPS on 64,000 procs

0.1

Molecular Dynamics

System Seconds 001
Cell PPE 0.425
MTA2 w/32 procs ~0.035
2.2GHz Opteron 0.125
Cell w/ 8 SPEs 0.013
GPU (7900GT) 0.012

CPU P4 (debug)
=== CPU P4 (opt)
=+ Cell SPE
= GeForce 6600
== QuadroFX 4500

Time (sec)

0.001 4

0.0001

5 7 9 11 13 15 17 19 21 23 25

w

Kernel Size 13

Disruptive Technologies and the S-Curve

i .2

=» Déjé vu? CLAYTON M. CHRISTENSEN

— Floating Point Systems
accelerator (1970-80s)

— eitek coprocessors |NN[|VAT[|HS
Cogon T DL

Th ai [hat Wil
[“f '|'|':|'- Ilcd

= Some differences ...
— Flops are free

— Power and thermal
envelopes are constraining
designs

Fualai niag Mazbery

Dwar & Techeslegy:
Bisild|) oF Torriv Touredabiore:
imnpravirg, swgmenting, 2zal yisg

HEY
TECHHDLOGY
CURYE

EXISTING
TEGHMOLOGY
CURYE

Moneerisg

Proapecting for mew possialities;
A plaring, Evaluating, frvanling

MEASURE OF ADYANCEMENT

MEASURE OF APPLIED EFFORT

14

Significant Hurdles to Adoption for
Accelerators (and multicores?)

= Performance prediction
— Should my organization purchase an accelerator?

— What will be the performance improvement on my
application workload with the accelerator?

— |Is the accelerator working as we expect?

— How can | optimize my application for the
accelerator?

= Productive software systems

— Do | have to rewrite my application for each
accelerator?

— How stable is the performance across systems?

15

Performance Modeling

Modeling Assertions Introduction

= \We need new application performance modeling techniques for
HPC to tackle scale and architectural diversity

— Performance modeling is quite useful at many stages in the architecture

and application development process

= EXisting approaches
— Manual

» Application driven

— Automated

» Target architecture driven

Black box schemes—accurate but applicability to a range of
applications and systems is unknown

= (Goals

Aim to combine analytical and empirical schemes

A framework for systematic model development — performance
engineering of applications

Modular

Hierarchical

Separate application and system variables

Based on ‘user’ or ‘code developer’ input—no magical solution
Scalable—future application and system configurations

17

Symbolic Performance Models with MA

Modeling Assertion (MA) = Empirical data + Symbolic modeling

Advantages over traditional
modeling technigues

— Modularity, portability and
extensibility

— Parameterized, symbolic
models are evaluated with
Matlab and Octave

Construct, validate, and
project application
requirements as a function
of input parameters

Declare important
application variables

l

Incrementally refine

Declare important model based on

application operations error rates by
- adding and
l modifying variable
and operation
Annotate code declarations
with MA API

l

Validate Modeling Assertions
empirically at runtime

l

Terminate when model is
representative& error level

is acceptable
18

MA Framework

/ ma(f)_subroutine_start/e@

KMA APl in C\ ma(f) loop_start/end Source
(for Fortran & ma(f)_flop_start/stop code |
C applications o ma(f)_hea_lp/stack_memory annotation
. asses of API ma(f) MpPi_XXXX
_ With MPI) . calls currently — —

: f)_set/unset_tracing
iImplemented and Kma(— — /

Runtime tested
system
generate
trace files ?ai” O
/ \ 'i'c-)(-)p (NAME = conj_loop) (COUNT = niter)
loop (NAME = norm_loop) (COUNT = I2npcols)
Model Control // {
: : mpi_irecv (NAME = nrecv) (SIZE = dp * 2);
validation flow model mpi_send (NAME = nsend) (SIZE = dp * 2);
) send = niter*(12npcols*(dp*2)+I12npcols*(dp)+
Symbollc model \\ cgitmax*(12npcols*(dp*na/num_proc_cols)+dp*na/n
\ / um_proc_cols+12npcols*(dp)+12npcols*(dp))+12npc
ols*(dp*naZnum_proc_cols)+dp*na/num_proc_cols+l
2npcols*(dp))

Post-processing toolset (in Java)

Example with MA Annotation

call maf_def variable_int("na®,na)

call maf_def variable_int(“nonzer®,nonzer) Input parameters: na, nonzer

T , , , v v niter and nprocs
call maf_def variable_assign_int("num_proc_cols”, P

> =2~ceil(log(nprocs)/(2*1og(2))) " ,num_proc_cols)

call maf_loop_start("conj_loop*", "niter”,niter) Derived parameters: nz,
do it = 1, niter num_proc_cols, 12cpcols and dp
(size of REAL)

send = niter*(I12npcols*(dp*2)+12npcols*(dp)+
cgitmax*(12npcols*(dp*na/num_proc_cols)+
dp*na/Znum_proc_cols+12npcols*(dp)+I12npcols*(dp))+
12npcols*(dp*naZnum_proc_cols)+

dp*na/num_proc_cols+12npcols*(dp)) pr floating-point
gperation count

a loop with loop
count

call maf_loop_end("conj_loop~,it-1)

call maf_subroutine_start("conj grad®) End markers used for

""") validation
call ma_loop_start("cj_matvec”, "I12npcols”, I2npcols)

do 1 = I2npcols, 1, -1
call maf_mpi_irecv(12rcv”, "dp*na/num_proc_cols”,

> dp*naa/npcols, 12npcols) Markup for subroutine
call mpi_irecv(q(reduce_recv_stairts(i)), invocation

> reduce_recv_lengths(1),

> dp_type,

call maf_subroutine_end("conj _grad®) MA MPI API call

20

Example Model Validation

NAS CG ‘I:l CG (measured) B CG (predicted) O SP (measured) O SP (predicted) ‘
Class S: na=1400, nonzer=7 1 00E+09 _—
Class W: na=7000, nonzer=8 » =
Class A: na=14000, nonzer=11 § 100E+08 B
Class B: na=75000, nonzer=13 5 LOOE+07 -]
Class C: na=150000, nonzer=15 S 1 00E+06 I o
S 1.00E+05 |
o
£ 1.00E+04 —
NAS SP T 1008403 |
Class S: problem_size=7 N B
Class W: problem_size=36 g
Class A: problem size=64 2 1.00E+01 -
Class B: problem_size=102 1. 00E+00
Class C: problem _size=162 s W A B C
. - Probleminstance
opq: ma_Tflop:7000:7000:0.0: PASS=50: FAIL=0
CjJ_sumred: ma_loop:1:1:0.0: PASS=50: FAIL=0
l4rcv: ma_mpi_irecv:8:8:0.0: PASS=50: FAIL=0
l14snd: ma_mpi_send:8:8:0.0: PASS=50: FAIL=0
sumred: ma_Fflop:1:1:0.0: PASS=50: FAIL=0
Tloprhopq: ma_Fflop:21001:21001:0.0: PASS=50: FAIL=0 :)
cj_rho: ma_loop:1:1:0.0: PASS=50: FAIL=0 Model validation output
I15rcv: ma_mpi_irecv:8:8:0.0: PASS=50: FAIL=0
15snd: ma_mpi_send:8:8:0.0: PASS=50: FAIL=0
flopbeta: ma_Tlop:7002:7001:1.426E-4: PASS=6: FAIL=44

flopnzx: ma_Tflop_start:3503:4347:-0.194: PASS=0: FAIL=2

Computation Distribution

= Runtime distribution across loop blocks in NAS SP and
CG

— Generated using symbolic models

— Vary important parameters, such as number of processors, apps
parameters

= Unlike CG, there is not a single hotspot in SP

% of total floating-point operations

P

S
100% -
10 |14
80% - |13

100% -
90% -

(]
>
o
)
80% - N
c
% %)
o oe ||| ois
00% 1 Al g 6%y mi10
50% - mis 5 o
40% - mI5 % 40% - ol
30% - m 4 > 7
° o3 £ —_— @6
20% T 20% +— | .l
aR =2
10% - < o4
ol © ol3
0% T L e T 1 °© 0% T T T T 1 a2
4 8 16 32 64 128 256 512 16 36 64 100 196 256 oI

Number of processors
Number of Processors P

22

MPI| Message Distribution Analysis

= CG
— 65% messages in CG are 8 bytes
— Remaining over 37 Kbytes

= SP
— 95% messages in SP are ~28 Kbytes
— Remaining 50-64 Kbytes

= Conclusion: CG requires low latency network

350
20 [lecomse
|
0_250 . *
2200 -
S a
100 . i
50 - * -
0 7—.7_‘_’_. T ‘ T . T ’ T . T T T T T I I I I I I
Speedup of NAS CG and SP - Yy 2 8 3 & 8 I 3
on ORNL Cray XT3 system Number of processors -

Sensitivity of SP calculations

2.E+10
1E+10 || —¢—FP Operations
—— Average memory /
1.E+10 1= Messages Sent (bytes)
1.E+10
8.E+09 -
6.E+09 -
4.E+09
2.E+09 /
0.E+00 —VW

162 324 486 648 810 972 1134 1296 1458 1620
problem size

Sensitivity of workload requirements with respect to the SP input parameter:
problem_size

Modeling Assertions with Accelerators

= MA framework provides critical information on
computational intensity and data movement that
IS critical for mapping applications to
accelerators

= MA iIs providing insight into DOE applications for
acceleration

— Biomolecular application: AMBER
— Climate Modeling: POP

25

Mapping Amber Kernel to FPGAs

1 [oar]

l -
2 | sande 3 39(y
73] l o/ I 4 | runmd

1
1 1 |
10005 force | 32 | fastwt_mp_quick3 | 45 | %ke |1000
1UUU

1000
—— | 2000
:
| getsiaims | = 4] packnoiist | 1319248
1002

ew_recip.f 1000

do_pmesh_kspace

18 20 1 2
90| fft_setup || fft_backrc | | fft_forwardrc f

|
1 4 [mzdore | 19 [fradzre 1000 1000

1001 15 70674000
G [aere [128001 G
|
0 24 | 106 | pub_fitf
11.22% 22 8320000 [omm |[omi] 3
|
20864000 20864000
passbh2.f
28 passb2 | 4006000 jac Amber8 benchmark:

List time (% of nonbond) = 4.72 (5.19)

Direct Ewald time = 70.82

Recip Ewald time = 14.76

Total Ewald time (% of nonbond)= 86.23 (94.81)

FFT time (% of Recip) = 4.76 (32.24)

Obtained 3x application speedup on FPGA using HLL on SRC 6C MapStation.

26

MPPS: Multi-Paradigm
Programming System

Multi-Paradigm Computing

= Several vendors are designing, even now
building multi-paradigm systems

— Along with general purpose microprocessors, a multi-
paradigm system may include:
e FPGAS
» Highly multi-threaded processors (MTA)
» Graphics processors
e Physics processors
« Digital signal processors B0 el G0 WA

— Vendors include:

* IBM, SGI, Cray, SRC,
ClearSpeed,
Linux Networx

: vector processor
GPU: graphics processing unit
FPGA: field programmable gate array

Multi-Paradigm Computing Challenges

= Multi-Paradigm systems offer lots of
performance potential, but...

= _..1t is challenging to realize that potential
— Different APIs, different tools, different assumptions!
— Different ISAs, SDKs
— Explicit data movement
— Simplistic scheduling
— Static binding to available resources

29

MPPS Basis:
Multi-Paradigm Procedure Call (MPPCQC)

= Multi-Paradigm Procedure Calls
— Adopt highly successful RPC approach
— Open protocol for communication within infrastructure

= MPPC runtime system
— Runtime agent to manage access to device

— Directory service for dynamic discovery of devices and their
status

— Local service OS on devices (if possible)

= Support for defining adaptive policies for scheduling
application requests onto computing devices

— Simple policies built-in

— Custom policies can be Applications Tools
driven by automated
administration and performance Libraries
tools MPPC
FPGA| MTA | GPU | Cell

Compiler Support for MPPS

= Pragmas identify regions of code to accelerate
— Built on Open64
— Similar to OpenMP analysis

= Extracts code for device service

— Device code compiled separately with device specific
SDK

= Replaces original code with MPPC call
— Marshals data; starts, waits on device

31

Summary

= Accelerators will continue to gain market share in one
form or another
— Expansion slots
— On-chip accelerators which are used as necessary

= Software systems that can mask the complexity will
become much more important
— Multi-paradigm Programming System
— Automated generation of MPPC calls

= Performance modeling and analysis will become critical
for procurements, validation, and optimization
— Modeling assertions

32

Acknowledgements and More Info

= This research was sponsored by the Office of Mathematical, Information,
and Computational Sciences, Office of Science, U.S. Department of Energy
under Contract No. DE-AC05-000R22725 with UT-Batelle, LLC.
Accordingly, the U.S. Government retains a non-exclusive, royalty-free
license to publish or reproduce the published form of this contribution, or
allow others to do so, for U.S. Government purposes.

= http://www.csm.ornl.qov/ft
= yetter@computer.org

33

http://www.csm.ornl.gov/ft
mailto:vetter@computer.org

Bonus Slides

Runtime (sec) [log scale]

Performance Stability

SPE Optimizations

0.681 s

Original Fast cosine Fast exp/sqrt SIMD

Performance Stability (2)

= HPC Challenge ratio of Optimized over Baseline

723

HPL RA PTRANS FFT STREAMS

MPIl Symbolic Models

Error rate for MPl message sizes and count = 0%

1.0E+08
L S &
10E+07 + —— —— & o * o *
1.0E+06 1 & CG (message wlume (bytes))
1.0E+05 | m CG (message count)
SP (message wlume (bytes))
1.0E+04 + SP (message count)
1.0E+03
" = m y ® = ® =&
1.0E+02 & —
1.0E+01
10E+00 I I I I I I I I I I I I I I I I
< 00 OO0 © IO N O© < 1 0NN © ON O < O
— N MO M O© N N N IHh O 1 O (N O
- < N N < 1D O O ©
Number of processors —

Message size (bytes) and message count per MPI task
for NAS MPI CG and SP benchmarks

37

Sensitivity Analysis: Data Generated by

P

P

150000 300000 450000 600000 750000 900000 1E+06 1E+06 1E+06 2E+06

na

/k = MA models generated

the required information
efficiently

Observation: the nonzer
parameter has a huge
Impact on computation
requirements

= Also identified that

nonzer has no impact on
MPI communication

Symbolic Models
. . . 3.E+07
= Appllcatlon _InpUt —e— FP Operations
parameters' _ 3.E+07 —#— LS Operations
— na (array size) o E+07
— nonzer (number of
nonzero elements) 2.E+07
= Question: which 1LE+07
parameter influences the
workload and how? |
0.E+00
2.E+08
2.E+08 -— _o— FP Operations
1.E+08 —8— LS Operations
1.E+08 /./
1.E+08 /. b 2
8.E+07 /
6.E+07 /
4. E+07 /
2.E+07 ".%
0.E+00 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
15 30 45 60 75 90 105 120 135 150

38

MPPS Research Directions

= |[ntegration with Modeling Assertions

— MA models can help MPPC make better scheduling
decisions

— MPPC behavior can be fed back to improve models
that are multi-paradigm aware

= Multi-operation scheduling

— Instead of MPPC_FFT, MPPC_DGEMM granularity,
turn over larger sequences of work to MPPC
Infrastructure

— More optimization opportunities
— More scheduling burden on MPPC infrastructure

39

int

main(int argc, char* argv(])

{

MPI_Init(argc, argv);
MPPC_ Init();

MPPC_DGEMM(a, b, s, Z): —

MPPC_ZDFFT(u, v, n): x

MPPC_Finalize();
MPI1_Finalize();
return O;

MPPC API

Mapping, data marshaling, scheduling
of specific multi-paradigm device
hidden from user.

Automated static analysis and profile-directed
feedback can hide conversion of applications to
MPPC and optimize series of MPPC routines.

40

	Application Accelerators: �Dues ex machina?�CCGSC, Flat Rock, North Carolina
	Highlights
	The Drama
	Current Approaches to �Continue Improving Performance
	Results from Initial Multicores �Provide Performance Boost
	Quad Kilo-core chips are on the way!
	Enter Application Accelerators
	For Example … Graphics Cards
	For Example … STI Cell
	For Example … ClearSpeed
	For Example … FPGAs
	AMD Torrenza Ecosystem
	Architectures that Match Application Requirements can offer Impressive/Astounding Performance Benefits
	Disruptive Technologies and the S-Curve
	Significant Hurdles to Adoption for �Accelerators (and multicores?)
	Performance Modeling
	Modeling Assertions Introduction
	Symbolic Performance Models with MA
	MA Framework
	Example with MA Annotation
	Example Model Validation
	Computation Distribution
	MPI Message Distribution Analysis
	Sensitivity of SP calculations
	Modeling Assertions with Accelerators
	Mapping Amber Kernel to FPGAs
	MPPS: Multi-Paradigm �Programming System
	Multi-Paradigm Computing
	Multi-Paradigm Computing Challenges
	MPPS Basis: �Multi-Paradigm Procedure Call (MPPC)
	Compiler Support for MPPS
	Summary
	Acknowledgements and More Info
	Bonus Slides
	Performance Stability
	Performance Stability (2)
	MPI Symbolic Models
	Sensitivity Analysis: Data Generated by Symbolic Models
	MPPS Research Directions
	MPPC API
	Example Logical View �of MPPC at Runtime

