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Highlights

= Background and motivation
— Current trends in architectures favor two strategies
« Homogenous multicore
» Application accelerators
= Correct architecture for an application can provide
astounding results

= Challenges to adopting application accelerators
— Performance prediction
— Productive software systems

= Solutions from Siskiyou

— Modeling assertions
— Multi-paradigm procedure call



The Drama

= Years of prosperity

Increasing large-scale parallelism
Increasing number of transistors

Increasing clock speed

Stable programming models and languages

= Notable constraints force a new utility function for
architectures

Signaling

Power

Heat / thermal envelope

Packaging

Memory, /O, interconnect latency and bandwidth
Instruction level parallelism

Market trends favor ‘good enough’ computing — Economist



Current Approaches to
Continue Improving Performance

= Chip Multiprocessors
— Homogenous multicore
— Intel
— AMD
— IBM

= Application accelerators to augment general
purpose multi-cores



MFlop/s

Results from Initial Multicores
Provide Performance Boost
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Qua€d Kilo-core chips are on the way!

= 4 core chips coming

= 8 core chips likely
= ??

RAPPORT

= Rapport

— Rapport currently offers a
256 core chip

— Planning 1024 core chip in
2007 — Kilocore™

— Targeted at mobile and
other consumer
applications




Enter Application Accelerators

= Optional hardware installed to accelerate applications
beyond the performance of the general purpose
processor

Intel Woodcrest NVIDIA Quadro NVIDIA GeForce IBM Cell ClearSpeed
Dual Core FX 4500 GPU 6600 GPU Processor Avalon
clock frequency | 3.0 GHz 470 MHz 350 MHz 3.2GHz 250 MHz
type | CPU accelerator card accelerator card CPU accelerator card
power usage | 80 W 110 W 30w 100 W 20w
speed single / | ~48 GFLOPS/ 180 GFLOPS / 20 GFLOPS / 256 GFLOPS / 50 GFLOPS /
double | ~24 GFLOPS NA NA 25 GFLOPS 50 GFLOPS
precision
typical size | CPU socket PCle / MXM' card | PCle / MXM' card CPU socket PCI-X card
cooling | heatsink + fan heatsink + fan HS-only or HS+fan heatsink + fan HS-only




For Example ... Graphics Cards
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For Example ... STI Cell
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For Example ... ClearSpeed
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For Example ... FPGAs

AMD Dpteron Cache
HyperTransport Memary

1400 MBIs 1400 MBIs
sustained sustained

payload payload

Microcode
ROM

Application

g GB/E Acceleration m
Aiels 4800 MBJs Cﬂcg:‘ﬂ
Cray RapidArray Xilimx (6 x 64b)

Interconnect Virtex |l Pro Six Banks
Dual-ported

On-Board h&emary

(24 MB)

4800 MBIs 4800 MBIs
(6 x 64b) (6 x 64b)
4800 MBJs

User Logic 1 192b User Logic 2
XC2V6000 XC2V6000

Ports MB/s
each
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AMD Torrenza Ecosystem
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Architectures that Match Application Requirements can offer
Impressive/Astounding Performance Benefits
- GEO-regiStratiOn on GPU Video Imagery Geo-registration 2k x 2k Output

— 700x speedup over commodity
processor

= Numerous FPGA results on

o
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B GPU QuadroFX 4500 with readback
B GPU GeForce 6600

B GPU QuadroFX 4500
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— 40x on Smith-Waterman
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Disruptive Technologies and the S-Curve
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Significant Hurdles to Adoption for
Accelerators (and multicores?)

= Performance prediction
— Should my organization purchase an accelerator?

— What will be the performance improvement on my
application workload with the accelerator?

— |Is the accelerator working as we expect?

— How can | optimize my application for the
accelerator?

= Productive software systems

— Do | have to rewrite my application for each
accelerator?

— How stable is the performance across systems?

15



Performance Modeling




Modeling Assertions Introduction

= \We need new application performance modeling techniques for
HPC to tackle scale and architectural diversity

— Performance modeling is quite useful at many stages in the architecture

and application development process

= EXisting approaches
— Manual

» Application driven

— Automated

» Target architecture driven

Black box schemes—accurate but applicability to a range of
applications and systems is unknown

= (Goals

Aim to combine analytical and empirical schemes

A framework for systematic model development — performance
engineering of applications

Modular

Hierarchical

Separate application and system variables

Based on ‘user’ or ‘code developer’ input—no magical solution
Scalable—future application and system configurations

17



Symbolic Performance Models with MA

Modeling Assertion (MA) = Empirical data + Symbolic modeling

Advantages over traditional
modeling technigues

— Modularity, portability and
extensibility

— Parameterized, symbolic
models are evaluated with
Matlab and Octave

Construct, validate, and
project application
requirements as a function
of input parameters

Declare important
application variables

l

Incrementally refine

Declare important model based on

application operations error rates by
- adding and
l modifying variable
and operation
Annotate code declarations
with MA API

l

Validate Modeling Assertions
empirically at runtime

l

Terminate when model is
representative& error level

is acceptable
18



MA Framework

/ ma(f)_subroutine_start/e@

KMA APl in C\ ma(f) loop_start/end Source
(for Fortran & ma(f)_flop_start/stop code |
C applications o ma(f)_hea_lp/stack_memory annotation
. asses of API ma(f) MpPi_XXXX
\_ With MPI) . calls currently — —

: f)_set/unset_tracing
iImplemented and Kma( — — /

Runtime tested
system
generate
trace files ?ai” O
/ \ 'i'c-)(-)p (NAME = conj_loop) (COUNT = niter)
loop (NAME = norm_loop) (COUNT = I2npcols)
Model Control // {
: : mpi_irecv (NAME = nrecv) (SIZE = dp * 2);
validation flow model mpi_send (NAME = nsend) (SIZE = dp * 2);
) send = niter*(12npcols*(dp*2)+I12npcols*(dp)+
Symbollc model \\ cgitmax*(12npcols*(dp*na/num_proc_cols)+dp*na/n
\ / um_proc_cols+12npcols*(dp)+12npcols*(dp))+12npc
ols*(dp*naZnum_proc_cols)+dp*na/num_proc_cols+l
2npcols*(dp))

Post-processing toolset (in Java)



Example with MA Annotation

call maf_def variable_int("na®,na)

call maf_def variable_int(“nonzer®,nonzer) Input parameters: na, nonzer

T , , , v v niter and nprocs
call maf_def variable_assign_int("num_proc_cols”, P

> =2~ceil(log(nprocs)/(2*1og(2))) " ,num_proc_cols)

call maf_loop_start("conj_loop*", "niter”,niter) Derived parameters: nz,
do it = 1, niter num_proc_cols, 12cpcols and dp
(size of REAL)

send = niter*(I12npcols*(dp*2)+12npcols*(dp)+
cgitmax*(12npcols*(dp*na/num_proc_cols)+
dp*na/Znum_proc_cols+12npcols*(dp)+I12npcols*(dp))+
12npcols*(dp*naZnum_proc_cols)+

dp*na/num_proc_cols+12npcols*(dp)) pr floating-point
gperation count

a loop with loop
count

call maf_loop_end("conj_loop~,it-1)

call maf_subroutine_start("conj grad®) End markers used for

""" ) validation
call ma_loop_start("cj_matvec”, "I12npcols”, I2npcols)

do 1 = I2npcols, 1, -1
call maf_mpi_irecv( 12rcv”, "dp*na/num_proc_cols”,

> dp*naa/npcols, 12npcols) Markup for subroutine
call mpi_irecv( q(reduce_recv_stairts(i)), invocation

> reduce_recv_lengths(1),

> dp_type,

call maf_subroutine_end("conj _grad®) MA MPI API call

20



Example Model Validation

NAS CG ‘I:l CG (measured) B CG (predicted) O SP (measured) O SP (predicted) ‘
Class S: na=1400, nonzer=7 1 00E+09 _—
Class W: na=7000, nonzer=8 » =
Class A: na=14000, nonzer=11 § 100E+08 B
Class B: na=75000, nonzer=13 5 LOOE+07 - ]
Class C: na=150000, nonzer=15 S 1 00E+06 I o
S 1.00E+05 |
o
£ 1.00E+04 —
NAS SP T 1008403 |
Class S: problem_size=7 N B
Class W: problem_size=36 g
Class A: problem size=64 2 1.00E+01 -
Class B: problem_size=102 1. 00E+00
Class C: problem _size=162 s W A B C
. - Probleminstance
opq: ma_Tflop:7000:7000:0.0: PASS=50: FAIL=0
CjJ_sumred: ma_loop:1:1:0.0: PASS=50: FAIL=0
l4rcv: ma_mpi_irecv:8:8:0.0: PASS=50: FAIL=0
l14snd: ma_mpi_send:8:8:0.0: PASS=50: FAIL=0
sumred: ma_Fflop:1:1:0.0: PASS=50: FAIL=0
Tloprhopq: ma_Fflop:21001:21001:0.0: PASS=50: FAIL=0 : )
cj_rho: ma_loop:1:1:0.0: PASS=50: FAIL=0 Model validation output
I15rcv: ma_mpi_irecv:8:8:0.0: PASS=50: FAIL=0
15snd: ma_mpi_send:8:8:0.0: PASS=50: FAIL=0
flopbeta: ma_Tlop:7002:7001:1.426E-4: PASS=6: FAIL=44

flopnzx: ma_Tflop_start:3503:4347:-0.194: PASS=0: FAIL=2



Computation Distribution

= Runtime distribution across loop blocks in NAS SP and
CG

— Generated using symbolic models

— Vary important parameters, such as number of processors, apps
parameters

= Unlike CG, there is not a single hotspot in SP
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MPI| Message Distribution Analysis

= CG
— 65% messages in CG are 8 bytes
— Remaining over 37 Kbytes

= SP
— 95% messages in SP are ~28 Kbytes
— Remaining 50-64 Kbytes

= Conclusion: CG requires low latency network

350
20 [lecomse
|
0_250 . *
2200 -
S a
100 . i
50 - * -
0 7—.7_‘_’_. T ‘ T . T ’ T . T T T T T I I I I I I
Speedup of NAS CG and SP - Yy 2 8 3 & 8 I 3
on ORNL Cray XT3 system Number of processors -




Sensitivity of SP calculations

2.E+10
1E+10 || —¢—FP Operations
—— Average memory /
1.E+10 1= Messages Sent (bytes)
1.E+10
8.E+09 -
6.E+09 -
4.E+09
2.E+09 /
0.E+00 —VW

162 324 486 648 810 972 1134 1296 1458 1620
problem size

Sensitivity of workload requirements with respect to the SP input parameter:
problem_size



Modeling Assertions with Accelerators

= MA framework provides critical information on
computational intensity and data movement that
IS critical for mapping applications to
accelerators

= MA iIs providing insight into DOE applications for
acceleration

— Biomolecular application: AMBER
— Climate Modeling: POP

25



Mapping Amber Kernel to FPGAs

1 [oar]

l -
2 | sande 3 39(y
73 ] l o/ I 4 | runmd

1
1 1 |
10005 force | 32 | fastwt_mp_quick3 | 45 | %ke |1000
1UUU

1000
—— | 2000
:
| getsiaims | = 4] packnoiist | 1319248
1002

ew_recip.f 1000

do_pmesh_kspace

18 20 1 2
90| fft_setup || fft_backrc | | fft_forwardrc f

|
1 4 [ mzdore | 19 [ fradzre 1000 1000

1001 15 70674000
G [ aere [128001 G
|
0 24 | 106 | pub_fitf
11.22% 22 8320000  [omm |[omi] 3
|
20864000 20864000
passbh2.f
28 passb2 | 4006000 jac Amber8 benchmark:

List time (% of nonbond) = 4.72 (5.19)

Direct Ewald time = 70.82

Recip Ewald time = 14.76

Total Ewald time (% of nonbond)= 86.23 (94.81)

FFT time (% of Recip) = 4.76 (32.24)

Obtained 3x application speedup on FPGA using HLL on SRC 6C MapStation.
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MPPS: Multi-Paradigm
Programming System




Multi-Paradigm Computing

= Several vendors are designing, even now
building multi-paradigm systems

— Along with general purpose microprocessors, a multi-
paradigm system may include:
e FPGAS
» Highly multi-threaded processors (MTA)
» Graphics processors
e Physics processors
« Digital signal processors B0 el G0 WA

— Vendors include:

* IBM, SGI, Cray, SRC,
ClearSpeed,
Linux Networx

: vector processor
GPU: graphics processing unit
FPGA: field programmable gate array




Multi-Paradigm Computing Challenges

= Multi-Paradigm systems offer lots of
performance potential, but...

= _..1t is challenging to realize that potential
— Different APIs, different tools, different assumptions!
— Different ISAs, SDKs
— Explicit data movement
— Simplistic scheduling
— Static binding to available resources

29



MPPS Basis:
Multi-Paradigm Procedure Call (MPPCQC)

= Multi-Paradigm Procedure Calls
— Adopt highly successful RPC approach
— Open protocol for communication within infrastructure

= MPPC runtime system
— Runtime agent to manage access to device

— Directory service for dynamic discovery of devices and their
status

— Local service OS on devices (if possible)

= Support for defining adaptive policies for scheduling
application requests onto computing devices

— Simple policies built-in

— Custom policies can be Applications Tools
driven by automated
administration and performance Libraries
tools MPPC
FPGA| MTA | GPU | Cell




Compiler Support for MPPS

= Pragmas identify regions of code to accelerate
— Built on Open64
— Similar to OpenMP analysis

= Extracts code for device service

— Device code compiled separately with device specific
SDK

= Replaces original code with MPPC call
— Marshals data; starts, waits on device

31



Summary

= Accelerators will continue to gain market share in one
form or another
— Expansion slots
— On-chip accelerators which are used as necessary

= Software systems that can mask the complexity will
become much more important
— Multi-paradigm Programming System
— Automated generation of MPPC calls

= Performance modeling and analysis will become critical
for procurements, validation, and optimization
— Modeling assertions

32
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Performance Stability (2)

= HPC Challenge ratio of Optimized over Baseline
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MPIl Symbolic Models

Error rate for MPl message sizes and count = 0%

1.0E+08
L S &
10E+07 + —— —— & o * o *
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Sensitivity Analysis: Data Generated by

P

P

150000 300000 450000 600000 750000 900000 1E+06 1E+06 1E+06 2E+06

na

/k = MA models generated

the required information
efficiently

Observation: the nonzer
parameter has a huge
Impact on computation
requirements

= Also identified that

nonzer has no impact on
MPI communication

Symbolic Models
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MPPS Research Directions

= |[ntegration with Modeling Assertions

— MA models can help MPPC make better scheduling
decisions

— MPPC behavior can be fed back to improve models
that are multi-paradigm aware

= Multi-operation scheduling

— Instead of MPPC_FFT, MPPC_DGEMM granularity,
turn over larger sequences of work to MPPC
Infrastructure

— More optimization opportunities
— More scheduling burden on MPPC infrastructure
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int

main( int argc, char* argv(] )

{

MPI_Init( argc, argv );
MPPC_ Init();

MPPC_DGEMM( a, b, s, Z ): —

MPPC_ZDFFT(u, v, n ): x

MPPC_Finalize();
MPI1_Finalize();
return O;

MPPC API

Mapping, data marshaling, scheduling
of specific multi-paradigm device
hidden from user.

Automated static analysis and profile-directed
feedback can hide conversion of applications to
MPPC and optimize series of MPPC routines.
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