
High-Performance Distributed
Memory Graph Computations

Andrew Lumsdaine
Indiana University
lums@osl.iu.edu

Introduction
 Overview of our high-performance,

industrial strength, graph library
 Comprehensive features
 Impressive results

 Lessons on software use and reuse

Advancing Scientific Software
 Why is writing high performance software so

hard?
 Because writing software is hard!
 High performance software is software
 All the old lessons apply
 No silver bullets

 Not a language
 Not a library
 Not a paradigm

 Things do get better, but slowly

Advancing Scientific Software
Progress, far from

consisting in change,
depends on

retentiveness. Those who
cannot remember the

past are condemned to
repeat it.

Advancing Scientific Software
 Name the two most important pieces of

scientific software over last 20 years
 BLAS
 MPI

 Why are these so important?
 Why did they succeed?

MPI is the Worst Way to Program

Except for all the others!

Evolution of a Discipline

Craft

Production

Commercialization

Science

Professional Engineering

Cf. Shaw, Prospects for an engineering
discipline of software, 1990.

Virtuosos, talented amateurs
Extravagant use of materials
Design by intuition, brute force
Knowledge transmitted slowly, casually
Manufacture for use rather than sale

Skilled craftsmen
Established procedure
Training in mechanics
Concern for cost
Manufacture for sale

Educated professionals
Analysis and theory
Progress relies on science
Analysis enables new apps
Market segmented by
 product variety

Evolution of Software Practice
Ad-hoc solutions

Folklore

CodificationModels, Theories

New Problems

Improved Practice

Evolution of Software Language
Ad-hoc solutions

Folklore

LibrariesLanguages

New Problems

Improved Practice

What Doesn’t Work
Codification

Models, Theories

Languages
Improved Practice

The Parallel Boost Graph Library
 Goal: To build a generic library of efficient,

scalable, distributed-memory parallel graph
algorithms.

 Approach: Apply advanced software paradigm
(Generic Programming) to categorize and describe
the domain of parallel graph algorithms. Reuse
sequential BGL software base.

 Result: Parallel BGL. Saved years of effort.

Sequential Programming

SPMD Programming

Reuse

Graph Computations
 Irregular and unbalanced
 Non-local
 Data driven
 High data to computation ratio

 Intuition from solving PDEs may not apply

Generic Programming
 A methodology for the construction of

reusable, efficient software libraries.
 Dual focus on abstraction and efficiency.
 Used in the C++ Standard Template Library

 Platonic Idealism applied to
software
 Algorithms are naturally abstract,

generic (the “higher truth”)
 Concrete implementations are just

reflections (“concrete forms”)

Generic Programming Methodology
1. Study the concrete implementations of an algorithm
2. Lift away unnecessary requirements to produce a more

abstract algorithm
a) Catalog these requirements.
b) Bundle requirements into concepts.

3. Repeat the lifting process until we have obtained a
generic algorithm that:

a) Instantiates to efficient concrete implementations.
b) Captures the essence of the “higher truth” of that algorithm.

The Boost Graph Library (BGL)
 A graph library developed with the generic

programming paradigm

 Algorithms lift away requirements on:
 Specific graph structure
 How properties are associated with vertices and

edges
 Algorithm-specific data structures (queues, etc.)

The Sequential BGL
 The largest and most mature BGL

 ~7 years of research and development
 Many users, contributors outside of the OSL
 Steadily evolving

 Written in C++
 Generic
 Highly customizable
 Efficient (both storage and execution)

BGL: Algorithms
 Searches (breadth-first,

depth-first, A*)
 Single-source shortest

paths (Dijkstra, Bellman-
Ford, DAG)

 All-pairs shortest paths
(Johnson, Floyd-Warshall)

 Minimum spanning tree
(Kruskal, Prim)

 Components (connected,
strongly connected,
biconnected)

 Maximum cardinality
matching

 Max-flow (Edmonds-Karp,
push-relabel)

 Sparse matrix ordering (Cuthill-
McKee, King, Sloan, minimum
degree)

 Layout (Kamada-Kawai,
Fruchterman-Reingold, Gursoy-
Atun)

 Betweenness centrality
 PageRank
 Isomorphism
 Vertex coloring
 Transitive closure
 Dominator tree

BGL: Graph Data Structures
 Graphs:

 adjacency_list: highly configurable with
user-specified containers for vertices and edges

 adjacency_matrix

 compressed_sparse_row

 Adaptors:
 subgraphs, filtered graphs, reverse graphs
 LEDA and Stanford GraphBase

 Or, use your own…

BGL Architecture

Parallelizing the BGL
 Starting with the sequential BGL…

 Three ways to build new algorithms or data
structures

1. Lift away restrictions that make the component
sequential (unifying parallel and sequential)

2. Wrap the sequential component in a
distribution-aware manner.

3. Implement any entirely new, parallel
component.

 Generic interface from the Boost Graph Library
template<class IncidenceGraph, class Queue, class BFSVisitor,
 class ColorMap>
void breadth_first_search(const IncidenceGraph& g,
 vertex_descriptor s, Queue& Q,
 BFSVisitor vis, ColorMap color);

 Effect parallelism by using appropriate types:
 Distributed graph
 Distributed queue
 Distributed property map

 Our sequential implementation is also parallel!

Lifting Breadth-First Search

BGL Architecture

Parallel BGL Architecture

Algorithms in the Parallel BGL
 Breadth-first search*
 Eager Dijkstra’s

single-source shortest
paths*

 Crauser et al. single-
source shortest paths*

 Depth-first search
 Minimum spanning

tree (Boruvka*, Dehne
& Götz‡)

 Connected
components‡

 Strongly connected
components†

 Biconnected
components

 PageRank*
 Graph coloring
 Fruchterman-Reingold

layout*
 Max-flow†

* Algorithms that have been lifted from a sequential implementation
† Algorithms built on top of parallel BFS
‡ Algorithms built on top of their sequential counterparts

Abstraction and Performance
 Myth: Abstraction is the enemy of

performance.
 The BGL sparse-matrix ordering routines

perform on par with hand-tuned Fortran
codes.
 Other generic C++ libraries have had similar

successes (MTL, Blitz++, POOMA)
 Reality: Poor use of abstraction can result

in poor performance.
 Use abstractions the compiler can eliminate.

Lifting and Specialization

DIMACS SSSP Results

DIMACS SSSP Results

The BGL Family

 The Original (sequential) BGL

 BGL-Python

 The Parallel BGL

 Parallel BGL-Python

For More Information…
 (Sequential) Boost Graph Library

http://www.boost.org/libs/graph/doc
 Parallel Boost Graph Library

http://www.osl.iu.edu/research/pbgl
 Python Bindings for (Parallel) BGL

http://www.osl.iu.edu/~dgregor/bgl-python
 Contacts:

 Andrew Lumsdaine <lums@osl.iu.edu>
 Douglas Gregor <dgregor@osl.iu.edu>

Summary
 Effective software practices evolve from

effective software practices
 Explicitly study this in context of HPC

 Parallel BGL
 Generic parallel graph algorithms for

distributed-memory parallel computers
 Reusable for different applications, graph

structures, communication layers, etc
 Efficient, scalable

Questions?

