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Lore G RAED—

Programming Models

Computer scientists:
— Dedicate their lives to them

— Get Ph.D.'s for them

— Love them

Application programmers:
— Want to get their work done

— Choose the smallest evil
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lore GRAAED_—
Programming Models (2)

Single computer (a.k.a. sequential)

— Object-oriented or components

* High programmer productivity through high abstraction level

Parallel computer (a.k.a. cluster)

— Message passing

* High performance through good match with machine architecture
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Programming Models (3)

Grids (a.k.a. Melmac)

— 77?

* Fault-tolerance
* Security

Platform independence
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A Grid Application Execution Scenario

Resource Information Monitoring
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Lore G RAED—

Applications' View: Functional Properties

What applications need to do:

* Access to compute resources, job spawning and scheduling

Access to file and data resources

* Communication between parallel and distributed processes

Application monitoring and steering
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lore GRMRD—

Applications' View: Non-functional Properties

What else needs to be taken care of:
* Performance
* Fault tolerance
 Security and trust

* Platform independence
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Middleware's VieWw: (irom: Foster et al., “Anatomy of the Grid”)

OGSA: execution, data, res.mgmt.,

security, info., self mgmt., MPI...

Monitoring of + information about

resources (resource access control)

Network conn., authentication
“The hardware”
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Lore G RAED—

Features: Application vs. Middleware

Application View Feature Middleware View
Application ~ Monitoring/Info  Resources
Non-Functional Resource Access Functional

Non-Functional Security Functional
Non-Functional ~ Connectivity ~ Functional
Functional Data Functional

Functional Compute Nodes Functional

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies



x

Lore G RAED—

Levels of Virtualization

Collective layer Service APIs Individual resources
Resource layer Resource API (GRAM?)  resource/local scheduler
Connectivity layer P Network links

Cluster OS Management API Compute nodes

JVM Java Language 0S(?)

Virtual OS System calls 0S

0S System calls Hardware

Each virtualization brings a trade-off between abstraction and control.
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Translating to API's

grid-unaware application grid-aware
application

il  Application + runtime env.

application support tools

service and resource abstraction layer

Execution Information M i d d I ewa re

Management

Resources
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Lore GRERD—
Grid Application Runtime Stack

‘just want to run fast’ “want to handle remote data/machines”
A »

grid-unaware application grid—aware
application

MPICH-G grid—enabled programming environments simplified API
SAGA
Workflow application support tools
Satin/Ibis
service and resource abstraction layer
NetSolve

Added value for applications

Grid Application Toolkit (GAT)
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Lore G RAED—

Your API depends on what you want to do

Legacy apps

Parallel apps
Grid-aware codes
Support tools

Services/resource management

Sand boxing (VM's?)

Grid-enabled environment
Simplified APl (SAGA)
resource/service abstraction (GAT)

Service API's (“bells and WSDL's”)

Euro

pean
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lore GRAAED-—
A Case Study in Grid Programming

* Grids @ Work, Sophia-Antipolis,

France, October 2005
© DAS-2 site
* VU Amsterdam team © Grid'5000 site
participating in the N-Queens
contest

* Aim: running on a 1000
distributed nodes

Toulouse ()
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Lore G RAED—

The N-Queens Contest

 Challenge: solve the most board solutions within 1 hour
* Testbed:

— Grid5000, DAS-2, some smaller clusters

— Globus, NorduGrid, LCG, ???

— In fact, there was not too much precise information

available in advance...
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Lore G RAED—

Computing in an Unknown Grid?

* Heterogeneous machines (architectures, compilers, etc.)

— Use Java: “write once, run anywhere”
Use Ibis!

* Heterogeneous machines (fast / slow, small / big clusters)

— Use automatic load balancing (divide-and-conquer)
Use Satin!

* Heterogeneous middleware (job submission interfaces, etc.)

— Use the Grid Application Toolkit (GAT)!
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Assembling the Pieces

N-Queens Deployment application

grid-unaware application grid—aware
application

Satin/lbis grid—enabled programming environments simplified API

application support tools

service and resource abstraction layer

Java GAT on top of ProActive and ssh
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The Ibis Grid Programming System

' Application

[ Jruresma [ Juate
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Satin: Divide-and-conquer

* Effective paradigm for Grid applications (hierarchical)
« Satin: Grid-aware load balancing (work stealing)
 Also support for

— Fault tolerance

fib(3

— Malleability fio@
— Migration

fib(D fib{0
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Satin Example: Fibonacci

class Fib {
int £fib (int n) {
if (n < 2) return n;
int x = £fib(n-1);
int y = fib(n-2);

return x + y;

Single-threaded

Java

fib(2)

fib(1)

fib(5)
fib@) | | fib3)
\
fib3)| | fib(2) fib2)| | fib(1)
/N
fib(1) | | fib0) | | fib(1) | | fib(0)

fib(1)

fib(0)
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Satin Example: Fibonacci

public interface FibInter extends i1ibis.satin.Spawnable {

public 1nt fib (int n);

class Fib extends ibis.satin.SatinObject
implements FibInter {
public int fib (int n) {
if (n < 2) return n;
int x = fib(n-1); /*spawned*/
int y = fib(n-2); /*spawned*/
sync () ;
return x + y;

}
(use byte code rewriting to generate parallel code)

Leiden

Delft

Rennes

Sophia
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Lore G RAED—

Satin: Fault-Tolerance, Malleability, Migration

Satin: referential transparency (jobs can be recomputed)
— Goal: maximize re-use of completed, partial resuits
— Main problem: orphan jobs (stolen from crashed nodes)

— Approach: fix the job tree once fault is detected
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Lore G RAED—

Recovery after Processor has left/crashed

 Jobs stolen by crashed processor are re-inserted in the work
queue where they were stolen, marked as re-started

* Orphan jobs:
— Abort running and queued sub jobs
— For each complete sub job, broadcast (node id, job id)

to all other nodes, building an orphan table

(background broadcast)

* For Re-started jobs (and its children) check orphan table
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Lore G RAED—

One Mechanism Does It All

* [f nodes want to leave gracefully:

— Choose a random peer and send to it all completed,

partial results

— This peer then treats them like orphans

 Broadcast (job id, own node id) for all “orphans”

* Adding nodes is trivial: let them start stealing jobs

* Migration: graceful leaving and addition at the same time
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Lore G RAED—

Summary: lbis

 Java: “write once, run anywhere”

— machine virtualization

* |bis: efficient communication

— network virtualization

* Satin: load balancing, fault-tolerance, migration

— resource virtualization

But how do we deploy our Ibis / Satin application?
A (non-) functional problem to be solved
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lore G RED_
The Grid Application Toolkit (GAT)

 Simple and uniform API to various Grid middleware:

— Globus 2,3,4, ssh, Unicore, ...

» Job submission, remote file access,
job monitoring and steering

* Implementations:
— C, with wrappers for C++ and Python

— Java
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cluster n cluster 1

Ibis nhame server

TCP

e Java GAT
launch

ssh
file
ccess / copy

= written for N-Queens
contest
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Lore G RAED—
Results achieved on the Grid5000 Testbed

Site CPUs
Orsay 426
Bordeaux 92
Rennes, Opteron cluster 120
Rennes, Xeon cluster 128
Sophia Antipolis 196

Total: 960

* Solved n=22 in 25 minutes

* 4.7 million jobs, 800,000 load balancing messages
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Lore G RAED—

Pondering about Grid API's (a.k.a. Conclusions)

 Grid applications have many problems to address

* Different problems require different API's

* |t's all about virtualization (on all levels)

* Can we find the “MPI equivalent” for the grid? Should we?

 Grids are considered successful as soon as they become
invisible/ubiquitous.

* Are we done once everything is nicely virtualized “away”?

* Should everything just be a Web service? (maybe not)
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