(ore GRMD__

Grid Programming Models:
Requirements and Approaches

Thilo Kielmann

Vrije Universiteit, Amsterdam (i /

kielmann@cs.vu.nl

and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

"wﬂgi \

ban
e
-

e s

T

ol

S
e

e e Sl
emws:«x%&%;w eé{ee
il e

Sl BT

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore G RAED—

Programming Models

Computer scientists:
— Dedicate their lives to them

— Get Ph.D.'s for them

— Love them

Application programmers:
— Want to get their work done

— Choose the smallest evil

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

lore GRAAED_—
Programming Models (2)

Single computer (a.k.a. sequential)

— Object-oriented or components

* High programmer productivity through high abstraction level

Parallel computer (a.k.a. cluster)

— Message passing

* High performance through good match with machine architecture

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Programming Models (3)

Grids (a.k.a. Melmac)

— 77?

* Fault-tolerance
* Security

Platform independence

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

A Grid Application Execution Scenario

Resource Information Monitoring

Brokerin .
54=,-r".riﬂ1|9.~g Service Service

communication

= [application

application] —

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore G RAED—

Applications' View: Functional Properties

What applications need to do:

* Access to compute resources, job spawning and scheduling

Access to file and data resources

* Communication between parallel and distributed processes

Application monitoring and steering

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

lore GRMRD—

Applications' View: Non-functional Properties

What else needs to be taken care of:
* Performance
* Fault tolerance
 Security and trust

* Platform independence

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Middleware's VieWw: (irom: Foster et al., “Anatomy of the Grid”)

OGSA: execution, data, res.mgmt.,

security, info., self mgmt., MPI...

Monitoring of + information about

resources (resource access control)

Network conn., authentication
“The hardware”

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore G RAED—

Features: Application vs. Middleware

Application View Feature Middleware View
Application ~ Monitoring/Info Resources
Non-Functional Resource Access Functional

Non-Functional Security Functional
Non-Functional ~ Connectivity ~ Functional
Functional Data Functional

Functional Compute Nodes Functional

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore G RAED—

Levels of Virtualization

Collective layer Service APIs Individual resources
Resource layer Resource API (GRAM?) resource/local scheduler
Connectivity layer P Network links

Cluster OS Management API Compute nodes

JVM Java Language 0S(?)

Virtual OS System calls 0S

0S System calls Hardware

Each virtualization brings a trade-off between abstraction and control.

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Translating to API's

grid-unaware application grid-aware
application

il Application + runtime env.

application support tools

service and resource abstraction layer

Execution Information M i d d I ewa re

Management

Resources

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore GRERD—
Grid Application Runtime Stack

‘just want to run fast’ “want to handle remote data/machines”
A »

grid-unaware application grid—aware
application

MPICH-G grid—enabled programming environments simplified API
SAGA
Workflow application support tools
Satin/Ibis
service and resource abstraction layer
NetSolve

Added value for applications

Grid Application Toolkit (GAT)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore G RAED—

Your API depends on what you want to do

Legacy apps

Parallel apps
Grid-aware codes
Support tools

Services/resource management

Sand boxing (VM's?)

Grid-enabled environment
Simplified APl (SAGA)
resource/service abstraction (GAT)

Service API's (“bells and WSDL's”)

Euro

pean

Research Network on Foundations, Software Infrastructures an

d Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

lore GRAAED-—
A Case Study in Grid Programming

* Grids @ Work, Sophia-Antipolis,

France, October 2005
© DAS-2 site
* VU Amsterdam team © Grid'5000 site
participating in the N-Queens
contest

* Aim: running on a 1000
distributed nodes

Toulouse ()

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore G RAED—

The N-Queens Contest

 Challenge: solve the most board solutions within 1 hour
* Testbed:

— Grid5000, DAS-2, some smaller clusters

— Globus, NorduGrid, LCG, ???

— In fact, there was not too much precise information

available in advance...

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore G RAED—

Computing in an Unknown Grid?

* Heterogeneous machines (architectures, compilers, etc.)

— Use Java: “write once, run anywhere”
Use Ibis!

* Heterogeneous machines (fast / slow, small / big clusters)

— Use automatic load balancing (divide-and-conquer)
Use Satin!

* Heterogeneous middleware (job submission interfaces, etc.)

— Use the Grid Application Toolkit (GAT)!

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Assembling the Pieces

N-Queens Deployment application

grid-unaware application grid—aware
application

Satin/lbis grid—enabled programming environments simplified API

application support tools

service and resource abstraction layer

Java GAT on top of ProActive and ssh

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

The Ibis Grid Programming System

' Application

[Jruresma [Juate

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Satin: Divide-and-conquer

* Effective paradigm for Grid applications (hierarchical)
« Satin: Grid-aware load balancing (work stealing)
 Also support for

— Fault tolerance

fib(3

— Malleability fio@
— Migration

fib(D fib{0

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Satin Example: Fibonacci

class Fib {
int £fib (int n) {
if (n < 2) return n;
int x = £fib(n-1);
int y = fib(n-2);

return x + y;

Single-threaded

Java

fib(2)

fib(1)

fib(5)
fib@) | | fib3)
\
fib3)| | fib(2) fib2)| | fib(1)
/N
fib(1) | | fib0) | | fib(1) | | fib(0)

fib(1)

fib(0)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Satin Example: Fibonacci

public interface FibInter extends i1ibis.satin.Spawnable {

public 1nt fib (int n);

class Fib extends ibis.satin.SatinObject
implements FibInter {
public int fib (int n) {
if (n < 2) return n;
int x = fib(n-1); /*spawned*/
int y = fib(n-2); /*spawned*/
sync () ;
return x + y;

}
(use byte code rewriting to generate parallel code)

Leiden

Delft

Rennes

Sophia

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore G RAED—

Satin: Fault-Tolerance, Malleability, Migration

Satin: referential transparency (jobs can be recomputed)
— Goal: maximize re-use of completed, partial resuits
— Main problem: orphan jobs (stolen from crashed nodes)

— Approach: fix the job tree once fault is detected

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore G RAED—

Recovery after Processor has left/crashed

 Jobs stolen by crashed processor are re-inserted in the work
queue where they were stolen, marked as re-started

* Orphan jobs:
— Abort running and queued sub jobs
— For each complete sub job, broadcast (node id, job id)

to all other nodes, building an orphan table

(background broadcast)

* For Re-started jobs (and its children) check orphan table

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore G RAED—

One Mechanism Does It All

* [f nodes want to leave gracefully:

— Choose a random peer and send to it all completed,

partial results

— This peer then treats them like orphans

 Broadcast (job id, own node id) for all “orphans”

* Adding nodes is trivial: let them start stealing jobs

* Migration: graceful leaving and addition at the same time

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore G RAED—

Summary: lbis

 Java: “write once, run anywhere”

— machine virtualization

* |bis: efficient communication

— network virtualization

* Satin: load balancing, fault-tolerance, migration

— resource virtualization

But how do we deploy our Ibis / Satin application?
A (non-) functional problem to be solved

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

GAT API

GAT Engine

Ad a#n;rs

T 7

|

Application Layer

GAT Layer

aoeds Jas

i £

f

Grdeab S‘Er\ri cesf'f l

Un'icore

Globus—2.4

-

Globus-3.2

SSH/SSL

Service Layer

Core Layer

aoedg Ajjiqeden

GridLab

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

lore G RED_
The Grid Application Toolkit (GAT)

 Simple and uniform API to various Grid middleware:

— Globus 2,3,4, ssh, Unicore, ...

» Job submission, remote file access,
job monitoring and steering

* Implementations:
— C, with wrappers for C++ and Python

— Java

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

cluster n cluster 1

Ibis nhame server

TCP

e Java GAT
launch

ssh
file
ccess / copy

= written for N-Queens
contest

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore G RAED—
Results achieved on the Grid5000 Testbed

Site CPUs
Orsay 426
Bordeaux 92
Rennes, Opteron cluster 120
Rennes, Xeon cluster 128
Sophia Antipolis 196

Total: 960

* Solved n=22 in 25 minutes

* 4.7 million jobs, 800,000 load balancing messages

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore G RAED—

Pondering about Grid API's (a.k.a. Conclusions)

 Grid applications have many problems to address

* Different problems require different API's

* |t's all about virtualization (on all levels)

* Can we find the “MPI equivalent” for the grid? Should we?

 Grids are considered successful as soon as they become
invisible/ubiquitous.

* Are we done once everything is nicely virtualized “away”?

* Should everything just be a Web service? (maybe not)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

x

Lore G RAED—

Acknowledgements

Ibis:

Jason Maassen, Rob van Nieuwpoort, Ceriel Jacobs, Rutger Hofman,
Gosia Wrzesinska, Niels Drost, Olivier Aumage, Alexandre Denis, Fabrice
Huet, Henri Bal, the Dutch VL-e project

GAT:
Andre Merzky, Rob van Nieuwpoort, the EU GridLab project

N-Queens:
Ana-Maria Oprescu, Andrei Agapi, the EU CoreGRID NoE

SAGA:
Andre Merzky, Shantenu Jha, Pascal Kleijer, Hartmut Kaiser, Stephan
Hirmer, the OGF SAGA-RG, the EU XtreemOS project

Euro

pean Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

