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CCGSC History

* In 1998, I talked about checkpointing

scheduling.
* In 2002, I talked about logistical networking.
* In 2004, I was silent.
* In 2006, I’ll talk about erasure codes.

In 2000, I talked about economic models for
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What 1s Erasure Coding?
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Specifically
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Issues with Erasure Coding

e Performance

— Encoding TTIN
=
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— Decoding
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Issues with Erasure Coding

* Space Usage

— Quantified by two of four:
« Data Pieces: &
e Coding Pieces: m
» Total Pieces: n = (k+m)
e Rate: R = k/n

— Higher rates are more space efficient,
but less fault-tolerant / flexible.



Issues with Erasure Coding

e Failure Coverage - Four ways to specify

— Specified by a threshold:

* (e.g. 3 erasures always tolerated).

— Specified by an average:
* (e.g. can recover from an average of 11.84 erasures).

— Specified as MDS (Maximum Distance Separable):
* MDS: Threshold = average = m.
* Space optimal.

— Specified by Overhead Factor f:
» f=factor from MDS = m/average.
* f isalways>=1
« f=11is MDS.
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Who cares about erasure codes?

Anyone who deals with distributed data,

where failures are a reality.



Who Cares?

#1: Disk array systems.

* klarge, m small (<4)

e Minimum baseline is a

requirement.

e Performance is critical.

* Implemented in

controllers usually.

e RAID is the norm.
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e khuge, m huge.
* Resources highly

* Replication the

Who Cares?

#2. Peer-to-peer Systems

faulty, but
plentiful

(typically).

norm.




* khuge, m medium.
e Fluid environment.

* Speed of decoding the

« MDS not a requirement.

Who Cares?

#3: Distributed (Logistical) Data/Object Stores

 Client |

critical factor.

 Client |
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Who Cares?

#4: Digital Fountains
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Who Cares?

or

e k?m?

» Data availability the

only concern.

#5: Archival Storage
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Who Cares?

Mix & match

from the others.

#6: Clusters and Grids
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Who cares about erasure codes?

* Fran does (part of the “Berman pyramid”)

* Tony does (access to datasets and metadata)
* Joel does (Those sliced up mice)

» Phil does (Where the *!!#$’s my data?)

» Ken does (Scheduling on data arrival)

* Laurent does (Mars and motorcycles)

They just may not know 1t yet.
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Trivial Example: Replication

m replicas
One pl/ic—e })f data: Can tolerate any
%’ m erasures.
= -
>

« MDS

« Extremely fast encoding/decoding/update.
« Rate: R = I/(m+1) - Very space inefficient



Less Trivial Example: RAID Parity

\%GP.

Rate: R = k/(k+1) - Very space efficient
Optimal encoding/decoding/update:

Downside: m = I 1s limited.



The Classic: Reed-Solomon Codes

* Codes are based on linear algebra over GF(2¥).
* General-purpose MDS codes for all values of &, m.
* Slow.
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The RAID Folks: Parity-Array Codesur

* Coding words calculated from parity of data words.
 MDS (or near-MDS)).

* Optimal or near-optimal performance.

e Small m only (m=2, m=3, some m=4)

* Good names: Even-Odd, X-Code, STAR, HoVer,
WEAVER.
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The Radicals: LDPC Codes

* Iterative, graph-based encoding and decoding
* Exceptionally fast (factor of k)
 Distinctly non-MDS, but asymptotically MDS
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Problems with each:

* Reed-Solomon coding 1s limited.

— Slow.

* Parity-Array coding is limited.

— m=2, m=3 only well understood cases.

 LDPC codes are also limited.
— Asymptotic, probabilistic constructions.
— Non-MDS 1n the finite case.
— Too much theory; too little practice.



* Besides replication and RAID, the rest 1s
gray area, clouded by the fact that:

— Research 1s fractured.

— 60+ years of additional research 1s related, but
doesn’t address the problem directly.

— Patent 1ssues abound.

— General, optimal solutions are as yet unknown.



The Bottom Line

e The area 1s a mess:

— Few people know their options.
— Misinformation 1s rampant.

— The majority of folks use vastly suboptimal
techniques (especially replication).
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My Mission:

* To unclutter the area using a 4-point,
rhyming plan:

. Distill from previous work.
. Develop new/better codes.
. Because this stuff is not easy.

. Get code into people’s hand.



5 Research Projects

* 1. Improved Cauchy Reed-Solomon coding.
« 2. Parity-Scheduling

« 3. Matrix-based decoding of LDPC’s

* 4. Vertical LDPC’s

* 5. Reverting to Galois-Field Arithmetic



1. Improved Cauchy Reed-Solomon Coding.

* Regular Reed-Solomon coding works on words of
size w, and expensive arithmetic over GF(2V).
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1. Improved Cauchy Reed-Solomon Coding.

« (Cauchy RS-Codes expand the distribution matrix over
GF'(2) (bit arithmetic):

« Performance proportional to number of ones per row.
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1. Improved Cauchy Reed-Solomon Coding.

« Different Cauchy matrices have different
numbers of ones.

* Use this observation to derive optimal /
heuristically good matrices.




1. Improved Cauchy Reed-Solomon Coding.

* E.g. Encoding performance: (NCA 2006 Paper)

Factor over optimal

=== Regular Reed-Solomon ——= EvenQOdd Code
Cauchy Reed-Solomon (BC) ——=— STAR Code

—-=-Cauchy Reed-Solomon (Original) s X-Code

—— Cauchy Reed-Solomon (GC) * WEAVER Code




2. Parity Scheduling

* Based on the following observation:
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2. Parity Scheduling

« Relevant for all parity-based coding techniques:

 Start with common subexpression removal.

e (Can use the fact that XOR’s cancel.

E-0+ W

* Bottom line: RS coding approaching optimal?
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An aside for those who work with linear algebra. ...

Look familiar?




3. Matrix-Based Decoding for LDPC’s

e The crux: Graph-based encoding and decoding
are blisteringly fast, but codes are not MDS,
and 1n fact, don’t decode perfectly.
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3. Matrix-Based Decoding for LDPC’s

* Solution: Encode with graph, decode with matrix.

_ Invertible.

Issues: incremental decoding, common subex’s, etc.
Result: Push the state of the art further.
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4. Vertical LDPC’s

Employ augmented LDPC’s & Distribution matrices to
combine benefits of vertical coding/LDPC encoding.
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5. Reverting to Galois Field Arithmetic

e This 1s an MDS code for k=4, m=4 over GF(2¥), w = 3:

0/0]0 0
0 Node 1
0
0lo Node 2
00
0lolo Node 3
The kitchen ololo
table code 0[0]0]0 Node 4

00100

olololo Node 5
0/]010]0]0

0lolo Node 6
0/]010]0]0

0o Node 7
0/]010]0]0
R Node 8




5. Reverting to Galois Field Arithmetic

e If we use the Cauchy Reed-Solomon coding
transformation, we get the following Binary Dist. Matrix:

Node 1

Nods 2 3.33 XORs per coding word.
Node 3 Best current code is Cauchy RS @
Node 4 5.75 XORs per coding word.
Node 5

Node 6 At GF(27),1t’s 3.14

Node 7

Node & And at GF(2%), it’s 3.00.




What I Hope You Got From This:

* You pretend to care about erasure codes.

* You understand some of their 1ssues, and that we
don’t currently live 1n a perfect world.

* I’m working to push the world more toward
perfection.

 Some of this stuff is cool.

* Look for code / papers.
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