

Designing High Performance Autonomic Gateways for Large Scale Grids and Distributed Environments

Laurent Lefèvre INRIA / LIP

École Normale Supérieure de Lyon, France

laurent.lefevre@inria.fr

Outline

Needs and challenges for autonomic gateways in large scale grids

Scenario 1 : Autonomic gateways in industrial context

Scenario 2 : Inter-planetary Grids

Conclusion and future works

Grid applications from the network view

It is difficult to clearly define what is a grid application:

- depends on people you are speaking with
- depends on type of grids (data grid, computing grids, P2P grids, mobile grids)
- depends on protocols/API/environments (MPI, java, corba, Web Services...)
- Need an application grid view and understanding in terms of network

How is used the network?

Understand more:

- Communications frequency (bursts...)
- Aggregation on shared links/equipments
- Bottleneck effects
- Message patterns
- Network Topology ?
- Sharing of infrastructure with others applications?
- Impacts of network usage on scalability?
- •How to design network-aware applications? Usage of network services?
- •How my middleware impacts the network?
- -How to give pertinent information to users?

Active Grids: improving network usage with new dynamic services

- Exposing network capabilities to Grid middleware
- Support of multi-clusters / P2P Grids with active routers
- Example of services: Reliable Multicast, QoS, service deployment, compression, video adaptation,...
- Services deployed on demand : not enough

Need for new services and equipments

Gateway located on strategic locations

Data path

Embedded services:

- Filtering data
- Monitoring / collecting
- Re-injecting
- Context aware equipments

Propositions: Autonomic Networking: "When human intervention is not possible..."

Derived from "Autonomic Computing" (IBM)

Dynamic service deployment

Self-*

- self-managing
- self-configuring
- self-optimizing
- self-protecting
- self-healing/repairing

• ...

Proposing: Autonomic Programmable Network Gateways which measure / monitor network activity, collect and provide network information to schedulers and users (visualization)

- Without human: not possible (IPG, industrial deployment), not wanted (large scale Grids and environments)

Supporting Grid sessions

- Focusing on Grid sessions : run multiple times same applications on the Grid
- Monitoring and data collection

Architecture: Autonomic Gateway

Deployment / infrastructure

Grid visualization

- Understand more and visualize grid sessions in terms of network usage
- Detecting networking problems

TCP

Bi PIII 1.4 Ghz gateways

GEthernet NICs

UDP

Load balancing between CPUs

TCP

Challenges

- Limit impact/intrusion on data transfers (lightweight services, autonomic adaptive filtering)
- Increase context awareness

Scenario 1 : Industrial autonomic gateway (RNRT TEMIC project)

Scenario requirements

Easily and efficiently deployable hardware in industrial context: Enterprise Grid Easily removable at the end of the maintenance and monitoring contract.

Devices must fit industrial requirements:

- reliability
- fault-tolerance

Devices must be autonomic!

- auto-configurable
- re-programmable

Our approach

Designing an Industrial Autonomic Network Node (IAN²):

- Using a reliable and embedded hardware
- Running on a low resource consumption node OS
- Proposing an adapted EE
- Designing a set of services
- Evaluating solution in controlled and industrial scenario

Hardware / Node OS

A transportable solution.

Reduced risk of failure:

- fanless
- no mechanical hard disk drive

VIA C3 1GHz, 256MB RAM, 3xNIC Gbit Ethernet, 1GB Compact Flash,...

Indutrial Autonomic Network Node (IAN²) runs over Btux (bearstech.com)

Btux is based on a GNU/Linux OS

- rebuilt from scratch
- small memory footprint
- reduced command set available
- remotely upgradeable

Software Execution Environment:

IAN² Software Architecture

Our Industrial Autonomic Nework Node architecture supports:

- wired and wireless connections,
- CPU facility,
- Limited storage capabilities.

Sofatware Execution Environment

The EE is based on the *Tamanoir (INRIA)* software suite, a high performance execution environment for active networks.

Tamanoir: Too complex for industrial purpose.

Tamanoir^{embedded}:

- reduced code complexity,
- removed unused class and methods,
- simplify service design.

Software Execution Environment:

Autonomic Service Deployment

Tamanoir is written in Java and suitable for heterogeneous services.

Provides various methods for dynamic service deployment/update:

- from a service repository to a Tamanoir Active Node (TAN),
- from the previous TAN crossed by the active data stream,

from mobile equipments.

Experimental Evaluation:

Network Performances

Based on *iperf* (bandwidth, jitter, loss) on two topologies.

IAN² failed to obtain a full Gbit bandwidth due to the limited embedded CPU and chipset.

Configuration	Throughput	cpu send	cpu recv	cpu gateway
back-2-back	488 Mbps	90%	95%	N/A
gateway (1 stream)	195 Mbps	29%	28%	50%
gateway (8 streams)	278 Mbps	99%	65%	70%

Experimental Evaluation:

Network Performances

GigaEthernet:
480 Mbps
Wireless (802.11b):
4 Mbps

Experimental Evaluation:

Autonomic Performances

We ran two different active services:

- A lightweight service (MarkS)
- A heavyweight service (GzipS)

EE and services run in a SUN JVM 1.4.2

	4kB	16kB	32kB	56kB	
MarkS	96	144	 112	80	
GzipS	9.8	14.5	15.9	16.6	

(Throughput in Mbps)

Current / future experiments

Evaluating large scale deployment with the Grid5000 platform

Autonomic gateways around DSL infrastructure (DSLLAb project)

Scenario 2: Inter-planetary Grid

Challenges

- Space missions will/already require computing/storage ressources to process collected data (from robots, cameras, sensors...)
- Sending large computing equipments on remote planets: too expensive!
- Need for a computing Interplanetary Grid which can support space challenges and provide an unified framework for computing collected data.

Delay Tolerant Networking: "An approach to interplanetary internet"

DTN community works on networks which must deal with:

- high latencies
- frequent disconnections
- no end-to-end path
- power saving constraints

• ...

Based on a additional protocol layer. The *bundle layer*, which provides:

- intermediate storage
- adaptation to all kind of networks
- high latencies and long disconnections support

Application						Application		
Bundle layer								

[S.Burleigh, A.Hooke, L.Torgerson, K.Fall, V.Cerf, B.Durst, K.Scott and H.Weiss, IEEE Communications, June 2003]

Some (terrestrial/marine) DTN projects: "When connection is not always available..."

- UMassDieselNet http://prisms.cs.umass.edu/diesel
- ZebraNet http://www.princeton.edu/~mrm/zebranet.html
- DakNet http://firstmilesolutions.com
- SaamiNetworks
- DTN train demo

• ...

Connection / services in transport : Dieselnet

- •UMASS / Amherst
- •40 buses
- •Bus to bus throughput : 2 Mbits

Rural connections

- Ex company making money and providing services with DTN: (First Mille Solution)
- Services:
 - Offline web search
 - **Emails**
 - Voicemails/vi deo mails/ SMS

UNITED

DakNet®

Identity Card

Multiple Definitions of an Interplanetary-Grid?

- Infrastructure definition :
 - Derived from Interplanetary networks
 - Heavy computing resources on Earth
 - Lightweight computing remote resources
- Services definition :
 - Remote intervention without human
 - Ultra long latencies networks
 - Disruptive connections
- Applications definitions :
 - Supporting space missions applications with local and remote ressources
- IPG = Grid + Autonomic Gateways + DTN

New services required but problems already exist...

- If the network is out of reach equivalent to a very large network congestion
- Needs to introduce equipments with new services
- In a large scale context, man can not really intervene
- Autonomic services are required...

Why? (1)

- Today, applications must be adapted to support (very) high latency.
- Can not use end-to-end protocols. "Store-and-forward" technics required.
- Can not use negociation protocols. Protocols must take decisions locally and autonomously.

Why? (2)

- Grids' clusters connections can be through unreliable public links, providing no guaranty.
- Clusters owner may decide to disconnect their cluster from public access (own usage, management, upgrades,...)

Other clusters running the application **should not stop** because a cluster disappear for maybe just few hours!

Constraints

- Transport protocols, routing, name space... must be changed to fit new requirements.
- To build our architecture we need to take into account :

Classical Grid constraints

- Processing power
- Bandwidth
- Latency

IPG constraints

- Power consumption
- Volume (size)
- Ultra high latency
- Fault tolerance (no human intervention)

Our approach : designing services for gateway for IPG

- Considering disrupted infrastructure as ultra high latencies (or null bandwidth)
- Remaining as transparent as possible for users, applications and Grid middleware
- Designing an Autonomic Programmable Network Gateway (APNG)
- Proposing adapted services for IPG
- Deploying APNG on strategic locations (between clusters and the external networks)

Autonomic Programmable Network Gateway (APNG)

A convenient way to support:

- network disruptions
- no access to the recipient nodes
- Processing/adaptation on the fly of data streams

An interplanetary Grid scenario: Interplanetary Grid between Earth an Mars

Autonomic Programmable Network Gateway (APNG)

When a cluster is disconnected from the network the APNG should be able to:

- temporarily store data sent by the cluster's node in a local storage
- send a special acknowledgement (TACK) to the application

IPG: constraints and heterogeneity

3 levels of disruptions:

- Local (on earth) disruptions : between cluster/sites
- Long distance network disruptions (between earth and distant planet)
- Remote disruptions: between remote sensors and remote APNG

2 computing levels:

- Heavy computing on Earth
- Lightweight computing / filtering / storage on remote planet/space station

3 Networking levels:

- High speed networking : between clusters on earth
- High latency networking : satellite link between eath and remote planet
- Low power networking: between sensors and light processing capabilities

Heterogeneity in communications

Conclusions

- Given the available technologies, the concept of InterPlanetary Grid (IPG!) is far from Sci Fi
- The proposed architecture can also be applied to Grid infrastructure dealing with unreliable long distance network connections
- Disruption == long latency (minutes, hours, days)
- Our approach : first step to DTG : Disruption Tolerant Grids

Performance challenges

- Industrial embedded gateways enough efficient for low performance infrastructure (DSL...)
- Classical PC architecture : OK for Gbit infrastructure
- •What about 10G? -> Looking for gateways with 2 X 10G NIC with enough PCI/CPU

To show limitations, need for network processor (hardware) support, experiment with 10G networks

Current / Future works

- First experiment is on going work : inclusion of DTN in autonomic network platform
- Currently designing an DTG/IPG emulator
- Evaluation on a large scale with Grid'5000 project
- Combine and interface APNG with SBLOMARS: SNMP-Based Load Balancing Monitoring Agents for Resource Scheduling in Grids (Univ. Politechnica Catalunya, Barcelona)

Acknowledgments

Jean-Patrick Gelas

Damien Nicolet

Pierre Bozonnet

Martine Chaudier

Edgar Magana (UPC, Barcelona)

Questions?

laurent.lefevre@inria.fr

