
High-Performance Batched Computations

Innovative Computing Laboratory
University of Tennessee, 
Knoxville

In collaboration with: 
LLNL, Livermore, CA, USA
University of Manchester, Manchester, UK
University of Paris-Sud, France

May	18–19,	 2016	

Azzam Haidar



Outline
• Motivation
• Current approaches and challenges
• MAGMA Batched computations

– Algorithmic basics
– Design and optimizations for batched computations
– LU, QR, and Cholesky
– Performance results
– Energy efficiency

• MAGMA Batched computations for variable sizes
• Future direction



MAGMA Batched Computations



Batchedcomputation
intmain (intargc, char *argv[]) 
{
intnthreads, tid;
/* Forka team of threads givingthemtheirowncopies of variables */
#pragmaompparallelprivate(nthreads, tid)

{
/* Obtainthread number*/
tid= omp_get_thread_num();
printf(»Batchedcomputation fromthread = %d\n", tid);
/* Onlymaster thread doesthis*/
if (tid== 0) 
{
nthreads= omp_get_num_threads();
printf("Numberof threads = %d\n", nthreads);
}

}  /* All threads joinmaster thread and disband*/
}MAGMA Batched Computations



We present here a feasibility design study, the idea is to target the new
high-end technologies.

Our goals:

• Develop a high-performance numerical library for batched linear
algebra subroutines tuned for performance and energy efficiency
on modern processor architectures, CPU, GPU, Phi

• Define modular interfaces that allow code replacement techniques
[to provide the developers of applications, compilers, and runtime systems with the
option of expressing new, application-specific batched computations ]

• Propose template design and code auto generation for
performance portability

MAGMA Batched Computations



We present here a feasibility design study, the idea is to target the new
high-end technologies.

Key observations and current situation:

• There is a lack of HPC linear algebra software for small problems
especially for GPU

• CPU: this can be done easily using existing software infrastructure

1. naïve way: what we call Non-batched design

2. better way: Batched design

MAGMA Batched Computations



MAGMA Batched Computations CPU
1. Non-batched computation

loop over the matrices one by one and compute either:
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for (i=0; i<batchount; i++)  

A0 A1 A2 A3 

• sequentially wasting all the other cores, and attaining very poor 
performance

• Or using multithread (note that for small matrices there is not 
enough work for all cores so expect low efficiency as well as 
threads contention can affect the performance)
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for (i=cpu_id; i<batchount; i+=n_cpu)  

A1 
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2. Batched computation
loop over the matrices and assign a matrix to each core working on it 
sequentially and independently

• Since matrices are very small, all the n_cores matrices will fit into L2 
cache thus we do not increase L2 cache misses while performing in 
parallel n_cores computations reaching the best of each core



We present here a feasibility design study, the idea is to target the new
high-end technologies.

Key observations and current situation:

• There is a lack of HPC linear algebra software for small problems
especially for GPU

• CPU: this can be done easily using existing software infrastructure

• MIC: similarly to CPU but, however, today it requires optimizing BLAS
routines

MAGMA Batched Computations



MAGMA Batched Computations MIC

• Many parameter need to be considered, such as:

• Number of registers, cache size, vectorization AVX2, prefectching,
intrinsic versus simple loop, etc…

• Data Access Optimizations and Loop Transformation Techniques

• Register Data Reuse and Locality

• Effect of the Multi-threading

• Effect of the NUMA-socket and Memory Location

Simply
Need performance analysis (theoretical and tools)
Many code designs, and each may need tuning

Programming model: auto-generation and auto-tuning:
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Programming model: auto-generation and auto-tuning:

0 5 10 15 20 25 30 35

10

6

10

7

10

8

Matrix Size

N
u
m
b
e
r
o
f
i
n
s
t
r
u
c
t
i
o
n
s

gen

mkl

ijk

ikj

0 5 10 15 20 25 30 35

10

5

10

6

10

7

10

8

Matrix Size

N
u
m
b
e
r
o
f
l
o
a
d
s

gen load

mkl load

ijk load

ikj load

0 5 10 15 20 25 30 35

10

5

10

6

10

7

10

8

Matrix Size

N
u
m
b
e
r
o
f
s
t
o
r
e
s

gen store

mkl store

ijk store

ikj store



MAGMA Batched Computations MIC
Programming model: auto-generation and auto-tuning:



MAGMA Batched Computations MIC
Programming model: auto-generation and auto-tuning:



We present here a feasibility design study, the idea is to target the new
high-end technologies.

Key observations and current situation:

• There is a lack of HPC linear algebra software for small problems
especially for GPU

• CPU: this can be done easily using existing software infrastructure

• MIC: Similarly to CPU but, today it requires optimizing BLAS routines

• GPU: are efficient for large data parallel computations, and therefore have
often been used in combination with CPUs, where the CPU handles the
memory bound and difficult tasks to be parallelized while the GPU is used
for data intensive tasks

• What programming model is best for small problems?

MAGMA Batched Computations



• Linear solver Ax=b follow the LAPACK-style 
algorithmic design

• Two distinctive phases

• panel factorization: latency-bound workload

• trailing matrix update:  compute-bound operation 

P
a
n
e
l

Pi

Trailing 
matrix
update

Factored part of A

Algorithmic basics
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Classical strategies design 

• For large problems the strategy is to prioritize the 
data-intensive operations to be executed by the 
accelerator and keep the memory-bound ones for 
the CPUs since the hierarchical caches are more 
appropriate to handle it

Challenges

• Cannot be used here since matrices are very small 
and communication becomes expensive

Proposition

• Develop a GPU-only implementation
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Hybrid CPU+GPU algorithms
(small tasks for multicores and 
large tasks for GPUs)
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Classical strategies design 

• For large problems performance is driven by the update operations, e.g., Level 3 
BLAS (GEMM)

Challenges

• For batched small matrices it is more complicated and requires both phases to be 
efficient

Proposition

• Rethink and Redesign both phases in a tuned efficient way

MAGMA Batched Computations GPU



Classical strategies design 

• A recommended way of writing efficient GPU kernels is to use the whole GPU’s 
shared memory,registers/TB – load it with data and reuse that data in computations 
as much as possible.

Challenges

• Our study and experience shows that this procedure provides very good performance 
for classical GPU kernels but is not that appealing for batched algorithm for 
different reasons.

MAGMA Batched Computations GPU



Challenges

• Completely saturating the shared memory per SMX can decrease the 
performance of memory bound operations, since only one thread-block will be 
mapped to that SMX at a time (low occupancy) 

• Due to the limited parallelism in the small matrices, the number of threads used 
in the thread block will be limited, resulting in low occupancy, and subsequently 
poor core utilization

• Shared memory is small (48KB/SMX) to fit the whole panel

• The panel involves Non-GPU friendly operations:
• Vectors column (find the max, scale, norm, reduction)
• Row interchanges (swap)
• Small number of vectors (apply)

Proposition: custom design per operations type 
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ü optimized kernel 

ü using shared memory 

ü left v.s. right   looking

ü autotuned

Performance metrics analysis

• A recommended way of writing efficient GPU kernels is to use the whole GPU’s 
shared memory, registers/TB – load it with data and reuse that data in computations 
as much as possible.
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Performance metrics analysis

• A recommended way of writing efficient GPU kernels is to use the whole GPU’s 
shared memory, registers/TB – load it with data and reuse that data in computations 
as much as possible.
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ü optimized kernel 

ü using shared memory 

ü left v.s. right   looking

ü autotuned

Performance metrics analysis

• A recommended way of writing efficient GPU kernels is to use the whole GPU’s 
shared memory, registers/TB – load it with data and reuse that data in computations 
as much as possible.

MAGMA Batched Computations GPU

We	should	focus	on	the	
performance	analysis	
and	the	design	of	a	

kernel
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Performance metrics analysis

• A recommended way of writing efficient GPU kernels is to use the whole GPU’s 
shared memory, registers/TB – load it with data and reuse that data in computations 
as much as possible.



GPU Optimization Summary

• Hardware concepts
– CUDA core
– Warp
– Half-warp
– Register file
– Shared memory
– Atomics
– Shuffles
– SMX

• Software concepts
– Stream
– Thread block
– Kernel
– Inlining
– Intrinsics

• Algorithmic concepts
– Blocking
– Recursive blocking
– Kernel replacement
– Out-of-place operations

MAGMA Batched Computations GPU
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Anatomy of Optimizing an Algorithm:
Performance Analysis and Kernels 

Design of the LU Factorization
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Magma v1: classic blocked algorithm
CuBLAS

• 2x8-core Intel Xeon E5-2670  Sandy Bridge socket
• NVIDIA Kepler K40 GPU

Consider the LU factorization



swap kernel 60%

gemm kernel 15%

Profile and trace to find bottlenecks



swap kernel 60%

gemm kernel 15%

classical swap:

How does the swap work?

Profile and trace to find bottlenecks



swap kernel 60%

gemm kernel 15%

gemm kernel 30%

swap kernel 10%

Parallel swap:

Classic swap:

Profile and trace to find bottlenecks
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Magma v2: parallel swap
Magma v1: classic blocked algorithm
CuBLAS

• 2x8-core Intel Xeon E5-2670  Sandy Bridge socket
• NVIDIA Kepler K40 GPU



panel: classical getf2 38%

Bottlenecks:
• nb large: panel get slower 

--> very bad performance.
• nb small: panel get faster but the update is not anymore 

efficient since dealing with gemm’s of small 
sizes --> very bad performance.

• trade-off ? No effect, since we are talking about small size.

Proposition:
• We propose to develop two layers blocking: a recursive and 

nested blocking technique that block also the panel.

P
a
n
e
L

Trailing 
matrix
update

Factored part of A

32

MAGMA Batched Computations GPU

Panel factorization 
classic dgetf2:
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(e.g., size less than 32⇥ 8) Thus, one can expect that this is the most time consuming
part of the panel factorization.

Our analysis using the NVIDIA Visual Profiler [32] shows that a large fraction of
even a highly optimized batched factorization is spent in the panels, e.g., 40% of the
time for the QR decomposition. The profiler reveals that the larf kernel requires more
than 75% of the panel time by itself. The inefficient behavior of these routines is also
due to the memory access. To resolve this challenge, we propose to improve the ef-
ficiency of the panel and to reduce the memory access by using a two-level nested
blocking technique as depicted in Figure 3. First, we recursively split the panel to an
acceptable block size nb as described in Figure 3a. In principle, the panel can be blocked
recursively until a single element. Yet, in practice, 2-3 blocked levels (an nb = 32 for
double precision was the best) are sufficient to achieve high performance. Then, the rou-
tine that performs the panel factorization (geqr2) must be optimized, which complicates
the implementation. This optimization can bring between 30% to 40% improvement de-
pending on the panel and the matrix size. In order to reach our optimization goal, we
also blocked the panel routine using the classical blocking fashion to small blocks of
size ib (ib = 8 was the optimized choice for double precision) as described in Figure 3b.
More than 25% boost in performance is obtained by this optimization.

P!
a!
n!
e!
L!

Trailing !
matrix!
update!

sub panel 1a!

Factored part of A!

128!

sub trailing m
atrix 1b!

sub trailing m
atrix 2b!

sub panel 2a!

64!

32! 32!

sub trailing m
atrix 1b!

64!

(a) Recursive nested blocking fashion.
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sub panel !
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done!

done!

sub trailing m
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sub panel !
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(b) Classical blocking fashion.

Fig. 3. The recursive two-level nested blocking fashion used in our implementation to achieve
high-performance batched kernels.

Block Recursive dlarft Algorithm. The larft is used to compute the upper triangular
matrix T that is needed by the QR factorization in order to update either the trailing
matrix or the right hand side of the recursive portion of the QR panel. The classical
LAPACK computes T column by column in a loop over the nb columns as described in
Algorithm 1. Such implementation takes up to 50% of the total QR factorization time.
This is due to the fact that the kernels needed – gemv and trmv – require implementa-
tions where threads go through the matrix in different directions (horizontal vs. vertical,
respectively). An analysis of the mathematical formula of computing T allowed us to
redesign the algorithm to use Level 3 BLAS and to increase the data reuse by putting

Two-layers blocking:



panel: classical getf2 38%

panel factorization 
classical dgetf2:

panel: classical blocked 
getf2 8%

Recursive blocking of  
dgetf2:

MAGMA Batched Computations GPU
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Magma v3: recursive blocking
Magma v2: parallel swap
Magma v1: classic blocked algorithm
CuBLAS

• 2x8-core Intel Xeon E5-2670  Sandy Bridge socket
• NVIDIA Kepler K40 GPU
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Magma v3: recursive blocking
Magma v2: parallel swap
Magma v1: classic blocked algorithm
CuBLAS

batched dgemm 70%

Try to tune and optimize batched dgemm
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Magma v4: streamed/batched gemm
Magma v3: recursive blocking
Magma v2: parallel swap
Magma v1: classic blocked algorithm
CuBLAS

• 2x8-core Intel Xeon E5-2670  Sandy Bridge socket
• NVIDIA Kepler K40 GPU



MAGMA Batched Computations
Comparison to CPUs
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GPU: Magma
GPU: CUBLAS
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

• 2x8-core Intel Xeon E5-2670  Sandy Bridge socket
• NVIDIA Kepler K40 GPU

Higher is better
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GPU: Magma
GPU: CUBLAS
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

• 2x8-core Intel Xeon E5-2670  Sandy Bridge socket
• NVIDIA Kepler K40 GPU

Higher is better

MAGMA Batched Computations
Comparison to CPUs
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GPU: Magma
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

• 2x8-core Intel Xeon E5-2670  Sandy Bridge socket
• NVIDIA Kepler K40 GPU

Higher is better

MAGMA Batched Computations
Comparison to CPUs



Energy efficiency GPU

dgeqrf of 1000 batched matrices of size 1024x1024

• 2x8-core Intel Xeon E5-2670  Sandy Bridge socket
• NVIDIA Kepler K40 GPU

CPU	does	not	include	DRAM	power



NVIDIA Jetson TK1



Tegra K1 Main Specs

GPU

Architecture Kepler

CUDA	Cores 192

CPU

Architecture ARM	Cortex	A15	r3

Cores 4-plus-1

Frequency 2.3	GHz

Memory

Type DDR3L	and	LPDDR3

Size 8	GiB max	(40	bit	extension)

Display

LCD 3840x2160

HDMI 4K	(UltraHD,	4096x2160)

Manufacturing	Process 28	nm



QR Factorization Highlights

ØPerfect tool for imperfect data
ØWorks for over- and under-determined 

systems
ØDeals with rank deficient matrices

ØRank-revealing QR (RRQR)
ØBetter stability than partial pivoting LU on some

ØParallelizes well
ØNumerical stability allows code optimization

ØReduces cost for SVD
ØFor certain matrix shapes



Final Performance

Kepler ~ 100 Gflop/s
ARM ~    1 Gflop/s



Energy Summary on Jetson



MAGMA Batched Computations

Summary

Ø Batched computation can give a boost in performance for problem with very small sizes

Ø Traditional algorithmic design might not be the best direction

Ø we need a new way of thinking

Ø revisit and redesign algorithm to take advantage of the hardware specifics

Ø Performance modeling can help analyzing algorithm and their implementation, for example

Ø An optimized GPU function cannot be efficient for all kind of computation, it depend on the 
context used for

Ø Small computation are delicate and requires specific kernels (building block or fused).

Ø Low level API is required to avoid overhead and context switching



Future Directions

• Extended functionality
– Variable sizes (work in progress)
– Mixed-precision techniques
– Sparse direct multifrontal solvers & preconditioners
– Applications

• Further tuning
– autotuning

• GPU-only algorithms and implementations
• MAGMA Embedded
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